
2021

Chernogolovka, Russia

Programmer's reference

Microolap DAC for MySQL

Microolap DAC for MySQL v.3.3.2, Programmer's reference I

© 1999-2021, Microolap Technologies

Contents
... 11. Welcome!

... 21.1. Installation

... 41.2. Registration

... 41.3. Components list

... 52. TBDE2MySQLDAC

... 62.1. Properties

.. 62.1.1. ConvertComponents

.. 72.1.2. Database

.. 72.1.3. DeleteSourceComponents

.. 82.1.4. Execute

... 83. TMySQLBatchExecute

... 83.1. Properties

.. 93.1.1. Aborted

.. 93.1.2. Action

.. 103.1.3. Database

.. 103.1.4. Delimiter

.. 103.1.5. RowsAffected

.. 113.1.6. SQL

.. 113.1.7. Statement Position Properties

.. 123.1.8. StatementNumber

... 123.2. Methods

.. 123.2.1. AbortExecute

.. 133.2.2. ExecSQL

... 133.3. Events

.. 143.3.1. OnAfterExecute

.. 143.3.2. OnAfterStatement

.. 143.3.3. OnBatchError

.. 153.3.4. OnBatchErrorEx

.. 163.3.5. OnBeforeExecute

.. 163.3.6. OnBeforeStatement

.. 173.3.7. OnProcessEx

... 184. TMySQLDatabase

... 184.1. Properties

.. 204.1.1. Connected

.. 214.1.2. ConnectionCharacterSet

.. 214.1.3. ConnectionCollation

.. 224.1.4. ConnectionTimeout

.. 224.1.5. ConnectOptions

.. 244.1.6. DatabaseName

.. 244.1.7. DataSetCount

IIContents

© 1999-2021, Microolap Technologies

.. 244.1.8. DatasetOptions

.. 254.1.9. DataSets

.. 264.1.10. DesignOptions

.. 264.1.11. Exclusive

.. 264.1.12. Handle

.. 274.1.13. HandleShared

.. 274.1.14. Host

.. 274.1.15. InTransaction

.. 284.1.16. IsSSLUsed

.. 294.1.17. KeepConnection

.. 294.1.18. LastInsertID

.. 294.1.19. LoginPrompt

.. 304.1.20. MaxAllowedPacketSize

.. 314.1.21. MultiThreaded

.. 314.1.22. Params

.. 324.1.23. Port

.. 324.1.24. ReadOnly

.. 324.1.25. ServerVersion

.. 334.1.26. SSLProperties

... 344.1.26.1. SSLCert

... 344.1.26.2. SSLKey

... 354.1.26.3. SSLCACert

... 354.1.26.4. SSLLibName

... 364.1.26.5. SSLCryptoLibName

... 364.1.26.6. SSLLCipherList

... 374.1.26.7. TLSVersion

.. 374.1.27. TransIsolation

.. 384.1.28. UserName

.. 394.1.29. UserPassword

.. 394.1.30. Utf8Used

.. 404.1.31. WarningsCount

... 404.2. Methods

.. 434.2.1. ApplyUpdates

.. 434.2.2. ChangeUser

.. 434.2.3. Close

.. 444.2.4. CloseDataSets

.. 444.2.5. Commit

.. 454.2.6. Connect

.. 454.2.7. ConnectWithConnectionOptionsDialog

.. 464.2.8. Create

.. 464.2.9. Destroy

.. 474.2.10. Disconnect

Microolap DAC for MySQL v.3.3.2, Programmer's reference III

© 1999-2021, Microolap Technologies

.. 474.2.11. Execute

.. 484.2.12. GetCharSet

.. 494.2.13. GetClientInfo

.. 494.2.14. GetDatabaseCharacterset

.. 504.2.15. GetDatabaseCollation

.. 504.2.16. GetDatabases

.. 504.2.17. GetDatabaseSize

.. 514.2.18. GetFieldNames

.. 514.2.19. GetFuncNames

.. 524.2.20. GetHostInfo

.. 534.2.21. GetIdentifier

.. 534.2.22. GetProtoInfo

.. 534.2.23. GetRoutinesNames

.. 544.2.24. GetServerInfo

.. 554.2.25. GetServerStat

.. 554.2.26. GetStoredProcNames

.. 564.2.27. GetTableEngines

.. 564.2.28. GetTableNames

.. 574.2.29. Kill

.. 574.2.30. Open

.. 574.2.31. Ping

.. 584.2.32. Reconnect

.. 584.2.33. Rollback

.. 594.2.34. SelectXxx

.. 614.2.35. Shutdown

.. 614.2.36. StartTransaction

... 624.3. Events

.. 624.3.1. AfterConnect

.. 624.3.2. AfterDisconnect

.. 634.3.3. BeforeConnect

.. 634.3.4. BeforeDisconnect

.. 634.3.5. OnConnectionFailure

.. 644.3.6. OnLogin

.. 654.3.7. OnReconnect

... 655. TMySQLDataset

... 665.1. Properties

.. 685.1.1. Active

.. 695.1.2. AllowSequenced

.. 695.1.3. AutoCalcFields

.. 705.1.4. AutoRefresh

.. 705.1.5. AvailableResultsetCount

.. 715.1.6. BlockReadSize

IVContents

© 1999-2021, Microolap Technologies

.. 715.1.7. Bof

.. 725.1.8. Bookmark

.. 725.1.9. CacheBlobs

.. 735.1.10. CachedUpdates

.. 735.1.11. CanModify

.. 735.1.12. Database

.. 745.1.13. DefaultFields

.. 755.1.14. Eof

.. 755.1.15. FetchOnDemand

.. 765.1.16. FetchRows

.. 765.1.17. FieldCount

.. 775.1.18. FieldDefList

.. 775.1.19. FieldList

.. 775.1.20. Fields

.. 785.1.21. FieldValues

.. 795.1.22. Filter

.. 805.1.23. Filtered

.. 815.1.24. FilterOptions

.. 815.1.25. Found

.. 815.1.26. KeySize

.. 825.1.27. LastInsertID

.. 825.1.28. Modified

.. 835.1.29. MultiResultsetNo

.. 835.1.30. Name

.. 845.1.31. ObjectView

.. 845.1.32. RecNo

.. 845.1.33. RecordCount

.. 855.1.34. RecordSize

.. 855.1.35. RefreshDelete

.. 865.1.36. SortFieldNames

.. 875.1.37. SparseArrays

.. 875.1.38. State

.. 885.1.39. StatementID

.. 885.1.40. UpdateMode

.. 895.1.41. UpdateObject

... 895.2. Methods

.. 935.2.1. ActiveBuffer

.. 945.2.2. Append

.. 945.2.3. AppendRecord

.. 955.2.4. ApplyUpdates

.. 965.2.5. BookmarkValid

.. 965.2.6. Cancel

Microolap DAC for MySQL v.3.3.2, Programmer's reference V

© 1999-2021, Microolap Technologies

.. 975.2.7. CancelUpdates

.. 975.2.8. CheckBrowseMode

.. 985.2.9. CheckOpen

.. 985.2.10. ClearFields

.. 985.2.11. Close

.. 995.2.12. CloseDatabase

.. 995.2.13. CommitUpdates

.. 1005.2.14. CompareBookmarks

.. 1005.2.15. ControlsDisabled

.. 1015.2.16. CursorPosChanged

.. 1015.2.17. Delete

.. 1025.2.18. DisableControls

.. 1035.2.19. Edit

.. 1035.2.20. EnableControls

.. 1045.2.21. FetchAll

.. 1045.2.22. FieldByName

.. 1055.2.23. FindField

.. 1065.2.24. FindFirst

.. 1065.2.25. FindLast

.. 1075.2.26. FindNext

.. 1075.2.27. FindPrior

.. 1085.2.28. First

.. 1095.2.29. FlushBuffers

.. 1095.2.30. FreeBookmark

.. 1095.2.31. GetBlobFieldData

.. 1105.2.32. GetBookmark

.. 1105.2.33. GetCurrentRecord

.. 1115.2.34. GetDetailDataSets

.. 1115.2.35. GetFieldData

.. 1125.2.36. GetFieldList

.. 1125.2.37. GetFieldNames

.. 1135.2.38. GetFieldType

.. 1135.2.39. GetIndexInfo

.. 1145.2.40. GetLastInsertID

.. 1145.2.41. GotoBookmark

.. 1155.2.42. Insert

.. 1155.2.43. InsertRecord

.. 1165.2.44. IsEmpty

.. 1165.2.45. IsLinkedTo

.. 1175.2.46. Last

.. 1175.2.47. Locate

.. 1195.2.48. Lookup

VIContents

© 1999-2021, Microolap Technologies

.. 1195.2.49. MoveBy

.. 1205.2.50. Next

.. 1215.2.51. Open

.. 1225.2.52. OpenDatabase

.. 1225.2.53. Post

.. 1225.2.54. Prepare

.. 1235.2.55. Prior

.. 1245.2.56. Refresh

.. 1245.2.57. RefreshRecord

.. 1255.2.58. Resync

.. 1255.2.59. RevertRecord

.. 1265.2.60. SetFields

.. 1265.2.61. SortBy

.. 1275.2.62. Translate

.. 1285.2.63. UnPrepare

.. 1285.2.64. UpdateCursorPos

.. 1285.2.65. UpdateRecord

.. 1295.2.66. UpdateStatus

.. 1295.2.67. FetchNext

... 1305.3. Events

.. 1315.3.1. AfterCancel

.. 1325.3.2. AfterClose

.. 1325.3.3. AfterDelete

.. 1335.3.4. AfterEdit

.. 1335.3.5. AfterInsert

.. 1345.3.6. AfterOpen

.. 1345.3.7. AfterPost

.. 1355.3.8. AfterRefresh

.. 1355.3.9. AfterScroll

.. 1365.3.10. BeforeCancel

.. 1365.3.11. BeforeClose

.. 1365.3.12. BeforeDelete

.. 1375.3.13. BeforeEdit

.. 1375.3.14. BeforeInsert

.. 1385.3.15. BeforeOpen

.. 1385.3.16. BeforePost

.. 1385.3.17. BeforeRefresh

.. 1395.3.18. BeforeScroll

.. 1395.3.19. OnCalcFields

.. 1405.3.20. OnCompare

.. 1405.3.21. OnDeleteError

.. 1415.3.22. OnDeleting

Microolap DAC for MySQL v.3.3.2, Programmer's reference VII

© 1999-2021, Microolap Technologies

.. 1415.3.23. OnEditError

.. 1425.3.24. OnFilterRecord

.. 1435.3.25. OnInserting

.. 1435.3.26. OnNewRecord

.. 1445.3.27. OnPostError

.. 1445.3.28. OnPosting

.. 1455.3.29. OnUpdateError

... 1466. TMySQLDirectQuery

... 1466.1. Properties

.. 1476.1.1. Active

.. 1486.1.2. Bof

.. 1496.1.3. Database

.. 1496.1.4. Eof

.. 1506.1.5. FieldLength

.. 1506.1.6. FieldNames

.. 1516.1.7. FieldsCount

.. 1516.1.8. FieldValues

.. 1526.1.9. IsEmpty

.. 1526.1.10. RecNo

.. 1526.1.11. RecordCount

.. 1536.1.12. SQL

.. 1536.1.13. TMySQLDirectQuery.Properties.FieldTypes

... 1546.2. Methods

.. 1556.2.1. Close

.. 1556.2.2. FieldIndexByName

.. 1556.2.3. FieldIsNull

.. 1566.2.4. FieldRawDataPointer

.. 1566.2.5. FieldValueByFieldName

.. 1576.2.6. First

.. 1576.2.7. Last

.. 1586.2.8. MoveBy

.. 1586.2.9. Next

.. 1596.2.10. Open

.. 1596.2.11. Prior

.. 1606.2.12. Refresh

... 1607. TMySQLDump

... 1607.1. Properties

.. 1617.1.1. CompleteInsert

.. 1627.1.2. Database

.. 1627.1.3. Delimiter

.. 1627.1.4. DisableKeys

.. 1637.1.5. DisableUniqueChecks

VIIIContents

© 1999-2021, Microolap Technologies

.. 1647.1.6. DropObject

.. 1647.1.7. DumpOption

.. 1657.1.8. ExcludeTables

.. 1657.1.9. ExtInsert

.. 1667.1.10. ExtInsertsCount

.. 1667.1.11. IgnoreLockTables

.. 1667.1.12. IncludeHeader

.. 1677.1.13. Limit

.. 1677.1.14. LineComment

.. 1687.1.15. LockTables

.. 1687.1.16. RewriteFile

.. 1687.1.17. SQLFile

.. 1697.1.18. TableList

.. 1697.1.19. UseCreateDB

.. 1697.1.20. UseHexBlob

... 1707.2. Methods

.. 1707.2.1. DumpToStream

.. 1707.2.2. Execute

... 1717.3. Events

.. 1717.3.1. BeforeDump

.. 1717.3.2. OnDataProcess

.. 1727.3.3. OnProcess

... 1728. TMySQLMacroQuery

... 1728.1. Properties

.. 1768.1.1. MacroChar

.. 1768.1.2. MacroCount

.. 1768.1.3. Macros

... 1778.2. Methods

.. 1818.2.1. Reopen

.. 1818.2.2. MacroByname

... 1828.3. Events

... 1849. TMySQLMonitor

... 1849.1. Properties

.. 1849.1.1. Active

.. 1849.1.2. Handle

.. 1859.1.3. TraceFlags

... 1859.2. Events

.. 1859.2.1. OnSQL

... 18610. TMySQLQuery

... 18710.1. Properties

.. 19010.1.1. DataSource

.. 19210.1.2. Handle

Microolap DAC for MySQL v.3.3.2, Programmer's reference IX

© 1999-2021, Microolap Technologies

.. 19210.1.3. ParamCheck

.. 19210.1.4. ParamCount

.. 19310.1.5. Params

.. 19410.1.6. Prepared

.. 19410.1.7. ProcessComments

.. 19510.1.8. RequestLive

.. 19610.1.9. RowsAffected

.. 19710.1.10. SQL

.. 19710.1.11. SQLBinary

.. 19710.1.12. Text

.. 19810.1.13. UniDirectional

... 19810.2. Methods

.. 20210.2.1. Create

.. 20310.2.2. Destroy

.. 20310.2.3. ExecSQL

.. 20410.2.4. GetDetailLinkFields

.. 20410.2.5. ParamByName

... 20510.3. Events

... 20711. TMySQLStoredProc

... 20711.1. Properties

.. 21011.1.1. Params

.. 21011.1.2. ParamsCount

.. 21011.1.3. ProcedureName

.. 21111.1.4. RoutineType

... 21111.2. Methods

.. 21511.2.1. ExecProc

.. 21611.2.2. ParamByName

.. 21611.2.3. RefreshParams

.. 21711.2.4. SetNeedRefreshParams

... 21711.3. Events

... 21912. TMySQLTable

... 22012.1. Properties

.. 22312.1.1. BatchModify

.. 22412.1.2. CanModify

.. 22512.1.3. DataSource

.. 22512.1.4. DefaultIndex

.. 22512.1.5. Exists

.. 22712.1.6. FieldDefs

.. 22712.1.7. Handle

.. 22712.1.8. IndexDefs

.. 22812.1.9. IndexFieldCount

.. 22812.1.10. IndexFieldNames

XContents

© 1999-2021, Microolap Technologies

.. 22912.1.11. IndexFields

.. 22912.1.12. IndexName

.. 23012.1.13. KeyExclusive

.. 23112.1.14. KeyFieldCount

.. 23212.1.15. Limit

.. 23212.1.16. MasterFields

.. 23212.1.17. MasterSource

.. 23312.1.18. Offset

.. 23412.1.19. ReadOnly

.. 23512.1.20. ReopenOnIndexChange

.. 23512.1.21. StoreDefs

.. 23612.1.22. TableName

... 23612.2. Methods

.. 24212.2.1. AddIndex

.. 24312.2.2. ApplyRange

.. 24312.2.3. CancelRange

.. 24412.2.4. Create

.. 24412.2.5. CreateBlobStream

.. 24512.2.6. CreateTable

.. 24512.2.7. DeleteIndex

.. 24512.2.8. Destroy

.. 24612.2.9. EditKey

.. 24612.2.10. EditRangeEnd

.. 24712.2.11. EditRangeStart

.. 24712.2.12. EmptyTable

.. 24712.2.13. FindKey

.. 24812.2.14. FindNearest

.. 24912.2.15. GetDetailLinkFields

.. 24912.2.16. GetIndexNames

.. 25012.2.17. GetTableEngine

.. 25012.2.18. GotoCurrent

.. 25012.2.19. GotoKey

.. 25112.2.20. GotoNearest

.. 25212.2.21. IsSequenced

.. 25212.2.22. LockTable

.. 25312.2.23. RenameTable

.. 25312.2.24. SetKey

.. 25312.2.25. SetRange

.. 25412.2.26. SetRangeEnd

.. 25512.2.27. SetRangeStart

.. 25512.2.28. UnlockTable

... 25612.3. Events

Microolap DAC for MySQL v.3.3.2, Programmer's reference XI

© 1999-2021, Microolap Technologies

... 25813. TMySQLTools

... 25813.1. Properties

.. 25813.1.1. CheckOption

.. 25913.1.2. Database

.. 25913.1.3. Directory

.. 26013.1.4. MySQLOperation

.. 26113.1.5. RepairOption

.. 26113.1.6. TableList

... 26113.2. Methods

.. 26213.2.1. Execute

... 26213.3. Events

.. 26213.3.1. OnError

.. 26213.3.2. OnSuccess

... 26314. TMySQLUpdateSQL

... 26314.1. Properties

.. 26414.1.1. DataSet

.. 26414.1.2. DeleteSQL

.. 26514.1.3. InsertSQL

.. 26514.1.4. ModifySQL

.. 26614.1.5. Query

.. 26714.1.6. RefreshRecordSQL

.. 26814.1.7. SQL

... 26814.2. Methods

.. 26914.2.1. Apply

.. 26914.2.2. Create

.. 26914.2.3. Destroy

.. 27014.2.4. ExecSQL

.. 27114.2.5. SetParams

... 27115. FAQ

... 272
15.1. 1.I've purchased DAC for MySQL, but I keep getting the
nag(trial) screen. What can I do?

... 272

15.2. 2.I've created new project with C++Builder, put some DAC
for MySQL components on the form and run it. I have an Access
violation right after start. What can I do?

... 272
15.3. 3.How can I set database connection properties (eg.
coCompress) from code?

... 27215.4. 4.What do I need to use SSL-encrypted connections?

... 273
15.5. 5.I have encountered a performance problem with
reloading resultset. What can I do?

... 274
15.6. 6.Should I use TMySQLUpdateSQL everytime with
TMySQLQuery?

... 27415.7. 7.How can I use Unicode data in my application?

XIIContents

© 1999-2021, Microolap Technologies

... 275
15.8. 8. My Delphi 5 application with DAC for MySQL
components fails right after start with AV. What should I do?

... 27516. Examples

... 27616.1. AfterDelete, Format

... 27716.2. Append, FieldValues, Post

... 27716.3. BeforeInsert, Insert, AsInteger, FieldByName

... 27716.4. BeforePost, Abort

... 27816.5. Create, CreateBlobStream, Edit, CopyFrom

... 27816.6. CreateTable() method usage

... 27916.7. DataSetCount, DataSets

... 27916.8. DisableControls, EnableControls, Eof

... 28016.9. EditKey, GotoKey

... 280
16.10. EditRangeStart, EditRangeEnd, FieldByName,
ApplyRange

... 28016.11. EmptyTable

... 28116.12. FieldCount, Fields, FieldName

... 28116.13. FindField, AsString

... 28116.14. FindNearest

... 282
16.15. GetBookmark, GotoBookmark, FreeBookmark, FindPrior,
Value, OnDataChange, BOF

... 282
16.16. IndexDefs, Update, Count, Items, IndexName, Fields,
Name

... 28316.17. IndexFields, IndexFieldCount

... 28316.18. MasterSource, MasterFields

... 28316.19. Min, Max, Position, RecordCount, First, Next

... 28416.20. MoveBy, SelectedIndex, Tag

... 28416.21. ParamCount, DataType, StrToIntDef, AsXXX

... 28516.22. Prepared, Prepare

... 28516.23. SetKey, GotoNearest

... 28516.24. SetRange, CancelRange, Refresh

... 28616.25. SQL, ExecSQL

... 28616.26. State, Seek, Truncate

... 28617. DataTypes map

... 29018. License Agreement

Microolap DAC for MySQL, v.3.3.2, Programmer's reference1

© 1999-2021, Microolap Technologies

1. Welcome!

Thank you for your interest in Direct Access Components for MySQL!

DAC for MySQL is a member of Microolap Direct Access Components line of products.

Our DAC products allow to create Delphi/C++Builder applications with the direct access to SQL
servers without BDE, ODBC and even without libmysql.dll.

DAC for MySQL supports all available platforms in this IDE's:

§ Delphi 5-7,

§ C++Builder 5, 6;

§ Borland Developer Studio 2005-2006, Turbo Delphi 2006, Turbo C++ 2006;

§ CodeGear RAD Studio 2007 (both Delphi 2007 and C++Builder 2007);

§ CodeGear Delphi and C++Builder 2009 (Tiburon);

§ Embarcadero RAD Studio 2010 (both Delphi 2010 and C++Builder 2010);

§ Embarcadero RAD Studio XE (Delphi XE and C++Builder XE);

§ Embarcadero RAD Studio XE2 (Delphi XE2 and C++Builder XE2);

§ Embarcadero RAD Studio XE3 (Delphi XE3 and C++Builder XE3);

§ Embarcadero RAD Studio XE4 (Delphi XE4 and C++Builder XE4);

§ Embarcadero RAD Studio XE5 (Delphi XE5 and C++Builder XE5);

§ Embarcadero RAD Studio XE6 (Delphi XE6 and C++Builder XE6);

§ Embarcadero RAD Studio XE7 (Delphi XE7 and C++Builder XE7);

§ Embarcadero RAD Studio XE8 (Delphi XE8 and C++Builder XE8);

§ Embarcadero RAD Studio 10 Seattle (Delphi 10 Seattle and C++Builder 10 Seattle).

§ Embarcadero RAD Studio 10.1 Berlin (Delphi 10.1 Berlin and C++Builder 10.1 Berlin).

§ Embarcadero RAD Studio 10.2 Tokyo (Delphi 10.2 Tokyo and C++Builder 10.2 Tokyo).

§ Embarcadero RAD Studio 10.3 Rio (Delphi 10.3 Rio and C++Builder 10.3 Rio).

§ Embarcadero RAD Studio 10.4 Sydney (Delphi 10.3 Sydney and C++Builder 10.3 Sydney).

§ Embarcadero RAD Studio 11 Alexandria (Delphi 11 Alexandria and C++Builder 11 Alexandria).

All these products were developed according to the following requirements:

1. Avoid the weaknesses of BDE/ODBC technology:

Deployment:
You add to your distributive more than 5Mb with BDE;
If another BDE-based program will be installed on user's workstation it can conflict with your
application;
ODBC profile on user's workstation can be changed or damaged;
Possible ODBC drivers conflicts.

Performance:

http://microolap.com/products/connectivity/

Welcome! 2

© 1999-2021, Microolap Technologies

BDE uses another layer of middleware (ODBC). So, in this case you have two resource eaters:
BDE and ODBC.

BLOB fields:
Several of the SQL Links drivers provided with Delphi Enterprise Edition do not work with BLOB
data types correctly;

Data access:
BDE cannot access some RDBMS data types at all;

Cost:
Only the Enterprise Edition of Delphi (~$3000) includes the BDE SQL Links required for
connecting to DB servers.
DAC: Ability to work with Professional Edition.

2. Keep migration of old BDE/ODBC based projects to DAC easy:

No additional knowledge required:
DAC components are TDataSet compatible. Implementing of additional RDBMS-specific
functions and properties must be obvious;

No external modules:
DAC for MySQL does not require any additional external modules from MySQL (even
libmysql.dll).

See also: Components list

1.1. Installation

Installation:

§ Unzip archive file to any location you prefer;

§ Run .msi file and follow installation application instructions.

There are only compiled binaries installed for Trial package.

If you have one of Personal, Business, Commercial or Educational license packages you can choose to
install or not install binaries during installation process.

After installation application completes DAC for MySQL tab at the Components palette will appear.

DAC for MySQL With Sources version

§ Start your Delphi (if you're using Rad Studio for both programming languages you need start
Rad Studio);

§ Choose Main menu File/Open, and then select directory in which DAC for MySQL was installed;

§ Open MySQLDACXX.dproj, where XX - is the version of your IDE.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference3

© 1999-2021, Microolap Technologies

§ Select the target platform which you need in the Project Manager window and Build
MySQLDACXX.dproj. You can build MySQLDACXX.dproj for all platforms, but build for Win32 is
the required condition.

§ Close MySQLDACXX.dproj without save.

§ Open dcl_MySQLDACXX.dproj. Build & Install it. This is design time package so you need build
it only for Win32 target platform.

§ Close dcl_MySQLDACXX.dproj without save.

§ Add path to the DAC for MySQL sources for desired platform.

DAC for MySQL With Sources version (if you have C++ Builder only)

§ Start your C++ Builder;

§ Choose Main menu File/Open, and then select directory in which DAC for MySQL was installed;

§ Open MySQLDACXXCB.cbproj, where XX - is the version of your IDE.

§ Select the target platform which you need in the Project Manager window and Build
MySQLDACXXCB.cbproj.

§ Once you have built platforms you need, build package for Win32 platform. This is REQUIRED
condition!

§ Close MySQLDACXXCB.cbproj without save.

§ Open dcl_MySQLDACXXCB.cbproj. Build & Install it. This is design time package, so you need
build it only for Win32 target platform.

§ Close dcl_MySQLDACXXCB.cbproj without save.

§ Add path to the DAC for MySQL sources for desired platform.

Installation for Lazarus

§ Start your Lazarus IDE;

§ Choose Main menu Open, and then select DAC for MySQL sources directory;

§ Open MySQLDACL.lpk.

§ Click the Open Package button on dialog message.

§ Select Use>> Install.

§ Confirm rebuilding Lazarus.

§ Click Ignore All button if "ambiguous unit found" message dialog appears.

§ Set path to the DAC for MySQL sources in the FPC.cfg file.

Notes

Welcome! 4

© 1999-2021, Microolap Technologies

For working with MySQL 8 the OpenSSL libraries should be present. You can add path to these
libraries by PATH variable or copying to the project folder.

For using DAC for MySQL in Lazarus on Windows you need zlib1.dll.

1.2. Registration

Thank you for your interest in purchasing of DAC for MySQL!

You can choose licensing options and online secure services on DAC for MySQL page.

DAC for MySQL is a royalty-free product. This means, you have to register DAC for MySQL for each
developer, but not for each user of application you have developed!

After purchase you will receive an email with registered version download information in 1-2 business
days or even earlier.

Support for registered users:

§ Private support account in ticket support system. You can create new support ticket here:
http://www.microolap.com/support/ticket_edit.php;

§ Support by e-mail;

Update policy:

§ Any updates during one year since purchasing for free;

§ Update subscription renewals with significant discount.

1.3. Components list

There are DAC for MySQL components in alphabetical order with short descriptions.

Icon Component Description

TBDE2MySQLDAC This component is intended for the conversion of BDE Database
objects into DAC for MySQL Database objects. It provides an
easy way of migration from BDE components to DAC for MySQL.

TMySQLBatchExecut
e

This component can execute SQL scripts containing more than
one SQL statement.

TMySQLDatabase Provides discrete control over a connection to a single database

http://microolap.com/products/connectivity/mysqldac/order/
http://www.microolap.com/support/ticket_edit.php

Microolap DAC for MySQL, v.3.3.2, Programmer's reference5

© 1999-2021, Microolap Technologies

in a database application.

TMySQLDirectQuery Component for high-speed (3-4 times faster then with
TMySQLQuery component) data fetching. It is not TDataset
compatible.

TMySQLDump Allows to get SQL script with a dump of a Database. This script
can be executed on another MySQL server by
TMySQLBatchExecute component.

TMySQLMacroQuery TMySQLMacroQuery is the descendant of TMySQLQuery
component and supports all of its properties, methods, events,
and functionalities. The difference is in Macros and MacroChar
properties which help to modify SQL script text in design-time
and run-time with easy.

TMySQLMonitor Monitors dynamic SQL passed to the MySQL server.

TMySQLQuery Encapsulates a dataset with a result set that is based on an SQL
statement.

TMySQLStoredProc Provides full support for MySQL 5.0+ stored procedures.

TMySQLTable Encapsulates a database table.

TMySQLTools Allows to run MySQL diagnostic and repair operations such as
Repair, Check, Analyze, Optimize, Backup and Restore.

TMySQLUpdateSQL Applies updates on behalf of queries or stored procedures that
can't post updates directly.

2. TBDE2MySQLDAC

 This component is intended for the conversion of BDE, ZeosDB, dbExpress, ADO Database
objects into DAC for MySQL Database objects. It provides an easy way of migration from BDE,
ZeosDB, dbExpress, ADO components to DAC for MySQL.

TBDE2MySQLDAC 6

© 1999-2021, Microolap Technologies

BDE component ZeosDB
component

dbExpress
component

ADO component DAC for
MySQL
analog

TTable TZTable TSQLTable TADOTable TMySQLTable

TQuery TZQuery TSQLQuery TADOQuery TMySQLQuery

TStoredProc TZStoredProc TSQLStoredProc TADOStoredProc TMySQLStored
Proc

- - TSQLDataset TADODataset TMySQLQuery

See also: Properties

2.1. Properties

Please see TBDE2MySQLDAC properties short descriptions below:

ConvertComponents
Sets which one of BDE, ZeosDB, dbExpress, ADO components must be converted to DAC for
MySQL analogs.

Database
Points to TMySQLDatabase component which sets a DB to be connected with.

DeleteSourceComponents
Sets that all BDE, ZeosDB, dbExpress, ADO components must be deleted when DAC for MySQL
ones are created.

Execute
Performs the BDE, ZeosDB, dbExpress, ADO to DAC for MySQL conversion process.

2.1.1. ConvertComponents

 Since v2.6.0

Sets which one of BDE, ZeosDB, dbExpress, ADO components must be converted to DAC for MySQL
analogs.

Syntax:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference7

© 1999-2021, Microolap Technologies

type
 TConvertComponent = (convBDE, convADO, convDBX, convZeos);
 TConvertComponents = set of TConvertComponent;
property ConvertComponents: TConvertComponents;

Description:

Include corresponding values to ConvertComponents set to convert certain components to DAC for
MySQL analogs.

Set member Converted components

convBDE BDE database components

convADO ADO database components

convDBX DBX database components

convZeos ZeosDBO database components

2.1.2. Database

Points to TMySQLDatabase component which sets a DB to be connected with.

Syntax:

Database: TMySQLDatabase;

2.1.3. DeleteSourceComponents

 Since v2.6.0

Sets that all BDE, ZeosDB, dbExpress, ADO components must be deleted when DAC for MySQL ones
are created.

Syntax:

property DeleteSourceComponents: Boolean;

TBDE2MySQLDAC 8

© 1999-2021, Microolap Technologies

Description:

If set to True all TTable, TQuery and so on components will be deleted from project. In other case
they will be left on the form or data module. However, data sources and fields descriptions will be
detached from there and moved to the DAC for MySQL replacement.

 You may want to left BDE, ZeosDB, dbExpress, ADO components to check correctness of
the migration process manually.

2.1.4. Execute

Performs the BDE, ZeosDB, dbExpress, ADO to DAC for MySQL conversion process.

Syntax:

property Execute: Boolean;

Description:

Click this item within the Object Inspector at design time to convert BDE, ZeosDB, dbExpress, ADO
objects (TQuery, TTable and so on) into DAC for MySQL ones (TMySQLQuery, TMySQLTable and so
on respectively).

3. TMySQLBatchExecute

 TMySQLBatchExecute component can execute SQL scripts containing more than one SQL
statement. SQL script text must be set in SQL property. Each SQL statement must be separated by the
symbol set in the Delimiter property (";" by default).

Database property sets TMySQLDatabase object connected to DB in which SQL script will be
executed.

See also: Properties, Methods, Events

3.1. Properties

Please see TMySQLBatchExecute properties short descriptions below:

Aborted
Returns True if the script execution was aborted by AbortExecute method.

Database

Microolap DAC for MySQL, v.3.3.2, Programmer's reference9

© 1999-2021, Microolap Technologies

Points to TMySQLDatabase component which sets DB to be connected.

SQL
Contains the text of the SQL script to be executed.

Delimiter
Sets the SQL statements delimiter.

Action
Sets actions when SQL script statements errors occur.

RowsAffected
Returns total number of records changed by executed SQL script.

StatementBeginLine, StatementEndLine, StatementBeginCharacter, StatementEndCharacter,
StatementAbsoluteBeginCharacter, StatementAbsoluteEndCharacter

These properties contain information about position of current statement in the script to be
executed.

StatementNumber
Returns current statement number during script execution.

3.1.1. Aborted

Returns True if the script execution was aborted by AbortExecute method.

Syntax:

property Aborted : boolean;

Description:

Examine Aborted property value after script execution to determine if the script execution was
aborted by AbortExecute method call.

See also: AbortExecute method

3.1.2. Action

Action property sets actions when SQL script statements errors occur.

Syntax:

Action: TMySQLBatchAction;
Type
TMySQLBatchAction = (baFail, baAbort, baIgnore, baContinue);

TMySQLBatchExecute 10

© 1999-2021, Microolap Technologies

Description:

Action property sets actions when SQL script statements errors occur.

baFail
Exception will be generated (default).

baAbort
Eabort exception will be called, script execution will be stopped, error message will be not
displayed.

baIgnore
Error message will be not displayed, script execution will be continued from the next SQL
statement.

baContinue
Error message will be displayed, script execution will be continued from the next SQL
statement.

3.1.3. Database

Points to TMySQLDatabase component which sets DB to be connected.

Syntax:

Database: TMySQLDatabase

3.1.4. Delimiter

Sets the SQL statements delimiter.

Syntax:

Delimiter: string;

Description:

SQL statements included into SQL script set in SQL property must be separated by the string defined
in Delimiter property (";" by default).

3.1.5. RowsAffected

Returns total number of records changed by executed SQL script.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference11

© 1999-2021, Microolap Technologies

Syntax:

RowsAffected: LongInt;

Description:

In run-time RowsAffected returns total number of records changed by executed SQL script.

3.1.6. SQL

Contains the text of the SQL script to be executed.

Syntax:

SQL: TStringList;

Description:

SQL property contains the text of the SQL script which will be executed on. ExecSQL method call. Each
SQL statement must be ended with a symbol set in Delimiter property.

3.1.7. Statement Position Properties

These properties contain information about position of current statement in the script to be executed.

Syntax:

property StatementAbsoluteBeginCharacter: Cardinal;
property StatementAbsoluteEndCharacter: Cardinal;
property StatementBeginCharacter : Cardinal;
property StatementBeginLine : Cardinal;
property StatementEndCharacter : Cardinal;
property StatementEndLine : Cardinal;

Description:

In run-time these properties contain the information about position of current statement in executed
script. You can use these properties to highlight current statement in TMemo component in case of
any error.

StatementBeginLine
The first line number of the statement, starts from 1.

TMySQLBatchExecute 12

© 1999-2021, Microolap Technologies

StatementEndLine
The last line number of the statement, started from 1.

StatementBeginCharacter
Character number in StatementBeginLine string where current statement starts. Characters
numbering is started from 1.

StatementEndCharacter
Character number in StatementEndLine string where current statement ends. Characters
numbering is started from 1.

StatementAbsoluteBeginCharacter
Character number in whole SQL script where current statement begins. Characters numbering is
started from 1.

StatementAbsoluteEndCharacter
Character number in whole SQL script where current statement begins. Characters numbering is
started from 1.

3.1.8. StatementNumber

Returns current statement number during script execution

Syntax:

property StatementNumber : cardinal;

Description:

In run-time StatementNumber returns current statement number.

3.2. Methods

Please see TMySQLBatchExecute methods short descriptions below:

AbortExecute
Aborts script execution and returns from ExecSQL method.

ExecSQL
Executes SQL script set in SQL property.

3.2.1. AbortExecute

Aborts script execution and returns from ExecSQL method.

Syntax:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference13

© 1999-2021, Microolap Technologies

procedure AbortExecute;

Description:

Use AbortExecute method to abort script execution and return from ExecSQL method as soon as
possible. You can call this method from one of components event handlers. Aborted property is set to
True after this method call.

See also: ExecSQL method, Aborted property

3.2.2. ExecSQL

Executes SQL script set in SQL property.

Syntax:

procedure ExecSQL;

3.3. Events

Please see TMySQLBatchExecute events short descriptions below:

OnAfterStatement
Occurs immediately after execution of SQL statement from SQL script by ExecSQL method.

OnAfterExecute
Occurs immediately after SQL script was executed by ExecSQL method.

OnBeforeExecute
Occurs immediately before SQL script execution by ExecSQL method.

OnBatchError
Fires after an error occurs after execution of SQL statement from SQL script executed by
ExecSQL method.

OnBatchErrorEx
Extended version of OnBatchError event. Fires after an error occurs after execution of SQL
statement from SQL script executed by ExecSQL method.

OnProcessEx
Fires when component need to execute current statement from SQL script executed by ExecSQL
method.

TMySQLBatchExecute 14

© 1999-2021, Microolap Technologies

3.3.1. OnAfterExecute

OnAfterExecute event occurs immediately after SQL script was executed by ExecSQL method.

Syntax:

OnAfterExecute: TNotifyEvent;

3.3.2. OnAfterStatement

OnAfterStatement event fires immediately after execution of SQL statement from SQL script by
ExecSQL method.

Syntax:

type
 TMySqlBatchAfterStatementEvent = procedure(Sender: TObject;
 SQLText: string;
 const StatementNo, RowsAffected: Integer;
 const Success: boolean) of object;
 OnAfterStatement: TMySqlBatchAfterStatementEvent;

Description:

Parameters:

SQLText
SQL query statement text;

StatementNo
The number of the SQL statement in SQL script.

RowsAffected
The quantity of records changed after query execution;

Success
Return a value of the boolean type with query execution result.

3.3.3. OnBatchError

 Deprecated since v2.6.0, use OnBatchErrorEx

OnBatchError event fires after an error occurs after execution of SQL statement from SQL script
executed by ExecSQL method.

Syntax:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference15

© 1999-2021, Microolap Technologies

OnBatchError: TMySQLBatchErrorEvent;
Type
TMySQLBatchErrorEvent = procedure(Sender: TObject;
 E: EMySQLDatabaseError;
 SQLText: String;
 StatementNo: Integer) of object;

Description:

Parameters:

Sender
Points to TMySQLBatchExecute component generated this error;

E
An instance of EmySQLDatabaseError object which contains this error info;

SQLText
Contains the text of the statement in which this error occurs;

StatementNo
The number of the SQL statement in SQL script.

See also: OnBatchErrorEx event

3.3.4. OnBatchErrorEx

 Since v2.6.0

Extended version of OnBatchError event. OnBatchErrorEx event fires after an error occurs after
execution of SQL statement from SQL script executed by ExecSQL method.

Syntax:

OnBatchErrorEx: TMySQLBatchErrorExEvent;
type
TMySQLBatchErrorExEvent = procedure(Sender : TObject;
 E : EMySQLDatabaseError;
 SQLText : String;
 StatementNo : Integer;
 var aAction : TMySQLBatchAction) of object;

Description:

TMySQLBatchExecute 16

© 1999-2021, Microolap Technologies

Use this event if you want to add some custom error processing. For example to ask user if he wants
to continue. You can set aAction param value to baIgnore if user's answer is YES or to baAbort
otherwise.

 Take a look at Action property for possible aAction parameter values

Parameters:

Sender
Points to TMySQLBatchExecute component generated this error;

E

An instance of EmySQLDatabaseError object which contains this error info;

SQLText
Contains the text of the statement in which this error occurs;

StatementNo
The number of the SQL statement in SQL script.

aAction
Allows to override default error action defined with Action property for current statement.

See also: ExecSQL method, Action property

3.3.5. OnBeforeExecute

OnBeforeExecute event occurs immediately before SQL script execution by ExecSQL method.

Syntax:

OnBeforeExecute: TNotifyEvent;

3.3.6. OnBeforeStatement

OnBeforeStatement event fires immediately before execution of SQL statement from SQL script by
ExecSQL method.

Syntax:

type
 TMySqlBatchBeforeStatementEvent = procedure(Sender: TObject;
 SQLText: string;
 const StatementNo: Integer;
 var Allow: boolean) of object;
 OnBeforeStatement: TMySqlBatchBeforeStatementEvent;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference17

© 1999-2021, Microolap Technologies

Description:

Parameters:

SQLText
SQL query statement text;

StatementNo
The number of the SQL statement in SQL script.

Allow
Sets if allow this statement execution (True) or no (False).

3.3.7. OnProcessEx

 Since v2.6.0

OnProcessEx event fires when component need to execute current statement from SQL script
executed by ExecSQL method.

Syntax:

property OnProcessEx: TMySQLBatchProcessExEvent;
type
TMySQLBatchProcessExEvent = procedure(Sender : TObject;
 const SQLText : String;
 StatementType : TMySQLStatementType;
 const StatementNo : Integer;
 var Processed : boolean) of object;
TMySQLStatementType = (mstCursor, mstNonCursor);

Description:

Use this event if you want to execute statement by user code with some custom processing. For
example you can show resultset for cursor-returning query. Otherwise statement will be executed by
component itself without any special processing.

 OnProcessEx event differs from OnBeforeStatement event. You can cancel statement
execution at all in OnBeforeStatement event. OnProcessEx and OnAfterStatement events are
not fired if you'll set Allow parameter of OnBeforeStatement event to False. And
OnProcessEx event is just a way for some custom processing of executed statement.

Parameters:

Sender
Points to TMySQLBatchExecute component generated this error;

TMySQLBatchExecute 18

© 1999-2021, Microolap Technologies

SQLText
SQL query statement text

StatementType
Type of current statement. Possible values are:

§ mstCursor - Statement that return some resultset. This are SELECT, EXPLAIN, SHOW and
DESCRIBE statements for now.

§ mstNonCursor - All other statements.

StatementNo
The number of the SQL statement in SQL script

Processed
Set this parameter value to True if you don't want for component execute statement by itself.
For example if you've executed it by yourself in event handler.

See also: OnBeforeStatement and OnAfterStatement events

4. TMySQLDatabase

 TMySQLDatabase provides discrete control over a connection to a single database in a database
application.

Use TMySQLDatabase when a database application requires any of the following control over a
database connection:

§ Persistent database connections;

§ Customized database server logins;

§ Transaction control;

§ Single-value queries.

 Please read this FAQ section if you want to use Unicode strings in your application: How to
use Unicode data in my application?

See also: Properties, Methods, Events

4.1. Properties

Please see TMySQLDatabase properties short descriptions below:

Connected
Indicates whether or not a database connection is active.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference19

© 1999-2021, Microolap Technologies

ConnectionCharacterSet
Sets connection character set.

ConnectionCollation
Sets connection collation.

ConnectionTimeout
Specifies the time interval to awaiting for connection is established.

ConnectOptions
Sets DB connection parameters.

DatabaseName
Specifies the name of the database to associate with this database component.

DataSetCount
Indicates the number of active datasets associated with the connection component.

DatasetOptions
Returns or sets common properties for all datasets (tables, queries, stored procedures)
attached this TMySQLDatabase component.

DataSets
Provides an indexed array of all active datasets for a database component.

DesignOptions
Returns or sets database properties to organize the component behavior at design-time.

Exclusive
Deprecated property, use MultiThreaded instead

Handle
Specifies the database handle.

HandleShared
Specifies whether or not to share a database handle.

Host
Sets HOST on which server is running.

InTransaction
Indicates whether a database transaction is in progress or not.

IsSSLUsed
Read this property value to ensure that SSL encryption is used for connection to MySQL server.

KeepConnection
Specifies whether an application remains connected to a database even if no datasets are open.

LastInsertID
Get last inserted value of AUTO_INCREMENT column from MySQL server

LoginPrompt
Specifies whether a dialog appears immediately before opening a new connection.

TMySQLDatabase 20

© 1999-2021, Microolap Technologies

MaxAllowedPacketSize
Sets 'max_allowed_packet' connection parameter value in megabytes.

MultiThreaded
Allows usage of MySQL connection from several threads.

Params
Contains database connection parameters for the MySQL server.

Port
Sets server's port.

ReadOnly
Specifies that the database connection provides read-only access.

ServerVersion
Specifies server version like integer number.

SSLProperties
Sets options for SSL connection (encrypted protocol).

TransIsolation
Specifies the transaction isolation level for transactions.

UserName
The user ID with which you log on to the database.

UserPassword
To provide a password for the connection.

Utf8Used
Read this property value to ensure that UTF8 character set is used in the connection to MySQL
server. This property is read-only.

WarningsCount
Returns number of warnings issued by server for latest query.

4.1.1. Connected

Indicates whether or not a database connection is active.

Syntax:

property Connected: Boolean;

Description:

Set Connected to True to establish a database connection without opening a dataset.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference21

© 1999-2021, Microolap Technologies

Set Connected to False to close a database connection. An application can check Connected to
determine the current status of a database connection. If Connected is True, the database
connection is active; if False, and the KeepConnection property is also False, then the connection is
inactive.

 Set KeepConnection to True to avoid having to login to the server each time a database
connection is reopened.

4.1.2. ConnectionCharacterSet

 Since v2.6.1

Sets connection character set.

Syntax:

property ConnectionCharacterSet: String;

Description:

DAC for MySQL executes 'SET NAMES <character set name> COLLATE <collation name>' query
immediately after connection to the database is established, if at least one of
ConnectionCharacterSet or ConnectionCollation properties values is not set in empty string.

For details about character sets and collations in MySQL please refer to
http://dev.mysql.com/doc/refman/5.0/en/charset.html

 Supported character sets list may be received by executing 'SHOW CHARACTER SET' query.

 Please read this FAQ section if you want to use Unicode strings in your application: How to
use Unicode data in my application?

See also: ConnectionCollation, Utf8Used properties

4.1.3. ConnectionCollation

 Since v2.6.1

Sets connection collation.

Syntax:

http://dev.mysql.com/doc/refman/5.0/en/charset.html

TMySQLDatabase 22

© 1999-2021, Microolap Technologies

property ConnectionCollation: String;

Description:

DAC for MySQL executes 'SET NAMES <character set name> COLLATE <collation name>' query
immediately after connection to database is established, if at least one of ConnectionCharacterSet or
ConnectionCollation properties values is not set in empty string.

For details about character sets and collations in MySQL please refer to
http://dev.mysql.com/doc/refman/5.0/en/charset.html

 Every character set has its own set of collations.
You can get supported collations list by executing SHOW COLLATION LIKE 'utf8%' query
replacing utf8 with desired character set.

See also: ConnectionCharacterSet property

4.1.4. ConnectionTimeout

Specifies the time interval to awaiting for connection is established.

Syntax:

property ConnectionTimeout: cardinal;

Description:

Use ConnectionTimeout to specify the time interval in seconds before an attempt to make a
connection is considered unsuccessful. The default value is 30 seconds.

If a connection is successfully established before expiration of the seconds specified, then
ConnectionTimeout has no effect. If the specified time expires and a connection has not been
successfully established, the attempt is terminated and an exception is raised.

See also: Connect and ConnectWithConnectionOptionsDialog methods, OnConnectionFailure
event

4.1.5. ConnectOptions

Sets DB connection parameters.

http://dev.mysql.com/doc/refman/5.0/en/charset.html

Microolap DAC for MySQL, v.3.3.2, Programmer's reference23

© 1999-2021, Microolap Technologies

Syntax:

property ConnectOptions: TConnectOptions;
type
TConnectOption = (coCompress,
 coFoundRows,
 coIgnoreSpaces,
 coInteractive,
 coNoSchema,
 coODBC,
 coSSL);
TConnectOptions = set of TConnectOption;

Description:

The value of ConnectOptions is usually empty set [], but it can be set to a combination of the
following flags in very special circumstances:

coCompress
Use compression protocol.

coFoundRows
Return the number of found (matched) rows, not the number of affected rows.

coIgnoreSpaces
Allow spaces after function names. Makes all functions names reserved words.

coNoSchema
Don't allow the db_name.tbl_name.col_name syntax. This is intended for ODBC only: it causes
the parser to generate an error if you use that syntax, that is useful for trapping bugs in some
ODBC programs.
coODBC
The client is an ODBC client.
coInteractive
Allow interactive_timeout seconds (instead of wait_timeout seconds) of inactivity before
closing the connection.

coSSL
Use SSL (encrypted protocol).

Example of usage:

Use the following code to enable SSL usage at run-time:

mySQLDatabase1.ConnectOptions := mySQLDatabase1.ConnectOptions + [coSSL];

Don't forget to add MySQLTypes to your uses section.

TMySQLDatabase 24

© 1999-2021, Microolap Technologies

See also: SSLCert, SSLKey, IsSSLUsed properties

4.1.6. DatabaseName

Specifies the name of the database to associate with this database component.

Syntax:

property DatabaseName: String;

Description:

Use DatabaseName to specify the name of the database to use with a database component.

 Attempting to set DatabaseName when the Connected property is True raises an
exception.

See also: Host, Port, UserName, UserPassword properties

4.1.7. DataSetCount

Indicates the number of active datasets associated with the connection component.

Syntax:

property DataSetCount: Integer;

Description:

Use DataSetCount to determine the number of datasets listed by the DataSets property. DataSets
includes only active datasets; the value of DataSetCount changes when datasets are opened and
closed. Use DataSetCount as an upper bound when interacting through the DataSets property.

See also: Example: DataSetCount,DataSets

4.1.8. DatasetOptions

 Since v2.7.4

Microolap DAC for MySQL, v.3.3.2, Programmer's reference25

© 1999-2021, Microolap Technologies

Returns or sets common properties for all datasets (tables, queries, stored procedures) attached to
this TMySQLDatabase component.

Syntax:

TMySQLDatasetOption = (mdsoZeroDateAsNull, mdsoFTStringAsVarchar,
mdsoCaseInsensitiveLocalSort);
TMySQLDatasetOptions = set of TMySQLDatasetOption;
property DatasetOptions: TMySQLDatasetOptions;

Description:

Set DatasetOptions to adjust behavior of all TMySQLDataset descendants attached to this
TMySQLDatabase component. DatasetOptions is a set drawn from the following values:

mdsoZeroDateAsNull
Enables treating zero date values (like "0000-00-00" or "0000-00-00 00:00:00") as Null values
when opening dataset.

mdsoFTStringAsVarchar
When this option is set TMySQLTable.CreateTable method will create VARCHAR columns for
ftString fields. And if this option is not set TMySQLTable.CreateTable method will create CHAR
columns for ftString fields.

mdsoCaseInsensitiveLocalSort (since v2.7.6)
When this option is set TMySQLDataset descendants use case-insensitive sorting when using
SortBy method or SortFieldNames property. If this option is not set simple binary comparing is
performed for strings.

See also: TMySQLTable.CreateTable, TMySQLDataset.SortBy methods,
TMySQLDataset.SortFieldNames property

4.1.9. DataSets

Provides an indexed array of all active datasets for a database component.

Syntax:

property DataSets[Index: Integer]: TMySQLDataSet;

Description:

Use DataSets to access active datasets associated with a database component. An active dataset is
one that is currently open.

TMySQLDatabase 26

© 1999-2021, Microolap Technologies

See also: CloseDatasets, Example: DataSetCount,DataSets

4.1.10. DesignOptions

 Since v2.7.2

Returns or sets database properties to organize the component behavior at design-time.

Syntax:

TMySQLDBDesignOption = (ddoStoreConnected, ddoStorePassword);
TMySQLDBDesignOptions = set of TPSQLDBDesignOption;
property DesignOptions: TMySQLDBDesignOptions;

Description:

Set DesignOptions to include the desired properties for the TMySQLDatabase behavior at design-
time. DesignOptions is a set drawn from the following values:

ddoStoreConnected
Enable a saving of the Connected property into a .dfm file in design mode.

ddoStorePassword
Save a password into .dfm file. It can decrease the database security.

See also: Connected, UserPassword properties

4.1.11. Exclusive

This property is deprecated and left only for compatibility reasons. Changing its value affects nothing.
Use MultiThreaded property instead.

See also: MultiThreaded property

4.1.12. Handle

Specifies the database handle.

Syntax:

type HDBIDB: Longint;
property Handle: HDBIDB;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference27

© 1999-2021, Microolap Technologies

Description:

Use Handle only to bypass TMySQLDataBase methods and make direct calls to the directly to the
API. Many function calls require a Handle parameter. Handle is assigned an initial value when a
database is opened.

4.1.13. HandleShared

Specifies whether or not to share a database handle.

Syntax:

property HandleShared: Boolean;

Description:

Use HandleShared to indicate that a database component can share its handle. Set HandleShared to
True to avoid namespace conflicts for database components that appear in a remote data module, or
that appear in data modules you inherit from the Object Repository.

4.1.14. Host

Sets Host on which server is running.

Syntax:

property Host: String;

Description:

The value of Host may be either a hostname or an IP address. If property Host is empty string, or the
string "localhost", or '127.0.0.1' a connection to the local host is assumed. If the OS supports sockets
(Unix) or named pipes (Windows), they are used instead of TCP/IP to connect to the server.

See also: DatabaseName, Port, UserName, UserPassword properties

4.1.15. InTransaction

Indicates whether a database transaction is in progress or not.

TMySQLDatabase 28

© 1999-2021, Microolap Technologies

Syntax:

property InTransaction: Boolean;

Description:

Examine InTransaction at run-time to determine if a database transaction is currently in progress.
InTransaction is True if a transaction is in progress, False otherwise. The value of InTransaction
cannot be changed directly. Calling StartTransaction sets InTransaction to True. Calling Commit or
Rollback sets InTransaction to False.

 On contrary to BDE and ODBC you must explicitly specify a TMySQLDataBase component
for each MySQL table. Are transactions supported or not in MySQL depends on table type.
MyISAM tables (the default type in MySQL) don't support transactions; InnoDB and BDB
tables do.

See also: StartTransaction, Commit, Rollback methods

4.1.16. IsSSLUsed

 Since v2.7.1

Read this property value to ensure that SSL encryption is used for connection to MySQL server. This
property is read-only.

Syntax:

property IsSSLUsed: boolean;

Description:

DAC for MySQL supports SSL encryption for connections to MySQL. But there are several conditions
for SSL encryption could be used: MySQL server settings, client SSL-libraries availability, proper
certificate and key files. IsSSLUsed property is used to ensure that SSL encryption is really used after
connection is established.

 See SSLCert and SSLKey properties descriptions for details.

See also: SSLCert, SSLKey, ConnectOptions properties

Microolap DAC for MySQL, v.3.3.2, Programmer's reference29

© 1999-2021, Microolap Technologies

4.1.17. KeepConnection

Specifies whether an application remains connected to a database even if no datasets are open.

Syntax:

property KeepConnection: Boolean;

Description:

Use KeepConnection to specify whether an application remains connected to a database even if no
datasets are currently open. When KeepConnection is True (the default) the connection is
maintained. For connections to remote database servers, or for applications that frequently open and
close datasets, set KeepConnection to True to reduce network traffic, speed up applications, and
avoid logging in to the server each time the connection is reestablished.

When KeepConnection is False a connection is dropped when there are no open datasets. Dropping a
connection releases system resources allocated to the connection, but if a dataset is later opened
that uses the database, the connection must be reestablished and initialized.

4.1.18. LastInsertID

Get last inserted value of AUTO_INCREMENT column from MySQL server.

Syntax:

property LastInsertID : Int64;

Description:

DAC for MySQL performs 'SELECT LAST_INSERT_ID' query for current database and returns its result
as value of this property.

4.1.19. LoginPrompt

Specifies whether a dialog appears immediately before opening a new connection.

Syntax:

property LoginPrompt: Boolean;

Description:

TMySQLDatabase 30

© 1999-2021, Microolap Technologies

Set LoginPrompt to True to provide support when establishing a connection. When LoginPrompt is
True, a dialog appears to prompt users for a name and password. When this dialog appears depends
on the type of connection component.

For TMySQLDatabase, the dialog appears after the BeforeConnect event and before the AfterConnect
event, unless you supply an OnLogin event handler.

If there is an OnLogin event handler, that event occurs in place of the dialog. If correct values for the
user name and password are not supplied in the dialog or by the OnLogin event handler, the
connection fails.

This OnLogin event does not fire unless LoginPrompt is set to True.

When LoginPrompt is False, the application must supply user name and password values
programmatically.

 Storing hard-coded user name and password entries as property values or in code for an
OnLogin event handler can compromise server security.

 Another way to ask user for username and password is to call
ConnectWithConnectionOptionsDialog method.

See also: ConnectWithConnectionOptionsDialog method, OnLogin event

4.1.20. MaxAllowedPacketSize

 Since v2.6.1

Sets max_allowed_packet connection parameter value.

Syntax:

property MaxAllowedPackedSize : Cardinal; default 16; //in megabytes

Description:

Sets max_allowed_packet connection parameter value in megabytes. Default value is 16 Mb. Actually
this is the maximum size of data in a single field of single row that can be transferred from server to
client or from client to server. You can increase it if you are working with large BLOB values.
Maximum value is 1024 Mb (for current MySQL versions - 5.0/5.1).

Microolap DAC for MySQL, v.3.3.2, Programmer's reference31

© 1999-2021, Microolap Technologies

 Please note that this is client-side value. The server has its own max_allowed_packet
variable, so if you want to handle big packets, you must increase this variable both on the
client and on the server.

4.1.21. MultiThreaded

Allows usage of MySQL connection from several threads.

Syntax:

property MultiThreaded: Boolean;

Description:

If MultiThreaded is True, the internal connection handle usage is protected with critical sections.
This means that you can safely use TMySQLDataset descendants (TMySQLTable, TMySQLQuery,
TMySQLStoredProc) connected to TMySQLDatabase component in different threads of the
application.

 Setting MultiThreaded property to True doesn't mean that several queries will run in
several threads simultaneously. They will run one-by-one using the same connection to the
database (TMySQLDatabase component). If you want to run several queries simultaneously,
you'll need separate (TMySQLDatabase component) connection for every thread.

4.1.22. Params

Contains database connection parameters for the MySQL server.

Syntax:

property Params: TStrings;

Description:

Use Params to examine or specify database connection parameters, such as server port, server host,
user name, and password. Params is a list of string items, each representing a different database
connection parameter.

 At design time double-click a TMySQLDataBase component to invoke the Database
editor and set Params.

TMySQLDatabase 32

© 1999-2021, Microolap Technologies

4.1.23. Port

Sets server port.

Syntax:

property Port: Integer; default 3306

Description:

The value will be used as the port number for the TCP/IP connection. If Port is set to zero, the default
value is used (3306).

See also: DatabaseName, Host, UserName, UserPassword properties

4.1.24. ReadOnly

Specifies that the database connection provides read-only access.

Syntax:

property ReadOnly: Boolean;

Description:

Use ReadOnly to specify whether the database connection should allow the application to update the
tables and other metadata in the database. Set ReadOnly before opening the database.

When ReadOnly is False (the default), the application can modify tables and database metadata (like
indexes).

When ReadOnly is True, applications can browse tables but cannot update them. The application is
also prevented from creating or deleting metadata objects like tables and indexes.

4.1.25. ServerVersion

Specifies MySQL server version as an integer.

Syntax:

property ServerVersion: integer;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference33

© 1999-2021, Microolap Technologies

Description:

Use ServerVersion to get server version as an integer.

ServerVersion is represented as XYYZZ, where X is the major version, YY is the release level
leftpadded with zero, and ZZ is the version number within release series leftpadded with zero. For
example, 5.0.22 becomes 50022, 4.1.9 becomes 40109 and so on. Using this property you can just
compare servers versions as integers if you need to determine which version is higher.

ServerVersion is equal to -1 if the TMySQLDatabase component is not connected and equal to 0 if
the version string can't be successfully parsed.

See also: GetServerInfo method

4.1.26. SSLProperties

Sets options for SSL connection (encrypted protocol).

Syntax:

property SSLProperties: TSSLProperties

Description:

The value of ConnectOptions is usually empty set [], but it can be set to a combination of the
following flags in very special circumstances:

SSLCert
Containing the X.509 certificate.

SSLKey
Containing the Key for the X.509 certificate.

SSLCACert
Containing the Key for the authority certificate.

SSLLibName
The SSL library file.

SSLCryptoLibName
The SSL cryptography library file.

SSLCipherList
The cipher suite list.

TLSVersion

TMySQLDatabase 34

© 1999-2021, Microolap Technologies

TLS protocol version.

To force client library to use SSL encryption, you should add coSSL option to ConnectOptions property
value . To make sure that SSL encryption is really performed, please check IsSSLUsed property value
after connection is established.

 To use SSL connections between the MySQL server and client programs, your system must
be able to support OpenSSL and your version of MySQL must be 4.0.0 or newer and your
MySQL server must be properly configured for SSL support. Please refer to the MySQL manual
for details: http://dev.mysql.com/doc/

 DAC for MySQL had been tested with OpenSSL 0.9.8, 1.02, and 1.1.1 binaries. Please let us
know if you have any problems with newer versions of OpenSSL. Our Support Ticketing
system is available at http://microolap.com/support/

Don't forget to add MySQLTypes to your uses section.

See also: ConnectOptions, IsSSLUsed properties

4.1.26.1. SSLCert

File containing the X.509 certificate.

Syntax:

property SSLCert: String;

Description:

SSLCert is a string property that represents the file name that contains the content for the X.509
certificate.

See also: IsSSLUsed, ConnectOptions SSLKey, SSLCACert, SSLLibName, SSLCryptoLibName,
SSLCipherList, TLSVersion properties

4.1.26.2. SSLKey

File containing the Key for the X.509 certificate.

Syntax:

http://dev.mysql.com/doc/
http://microolap.com/support/

Microolap DAC for MySQL, v.3.3.2, Programmer's reference35

© 1999-2021, Microolap Technologies

property SSLKey: String;

Description:

SSLKey is a string property that represents the file name containing the contents for the X.509
certificate Key.

See also: IsSSLUsed, ConnectOptions SSLCert, SSLCACert, SSLLibName, SSLCryptoLibName,
SSLCipherList, TLSVersion properties

4.1.26.3. SSLCACert

File containing the authority certificate.

Syntax:

property SSLCACert: String;

Description:

SSLCACert is a string property that represents the file name containing the contents for the authority
certificate.

See also: IsSSLUsed, ConnectOptions SSLCert, SSLKey, SSLLibName, SSLCryptoLibName,
SSLCipherList, TLSVersion properties

4.1.26.4. SSLLibName

The SSL library file.

Syntax:

property SSLLibName: String;

Description:

SSLLibName is a string property that represents the file name for the SSL library.
If it is not set, the following default library names will be used for searching: 'libssl-1_1.dll',
'libssl.dll', 'ssleay32.dll'.

TMySQLDatabase 36

© 1999-2021, Microolap Technologies

See also: IsSSLUsed, ConnectOptions SSLCert, SSLKey, SSLCACert, SSLCryptoLibName,
SSLCipherList, TLSVersion properties

4.1.26.5. SSLCryptoLibName

The SSL cryptography library file.

Syntax:

property SSLCryptoLibName: String;

Description:

SSLLibName is a string property that represents the file name for the SSL cryptography library.
If it is not set, the following default library names will be used for searching: 'libcrypto-1_1.dll',
'libcrypto.dll', 'libeay32.dll'.

See also: IsSSLUsed, ConnectOptions SSLCert, SSLKey, SSLCACert, SSLLibName, SSLCipherList,
TLSVersion properties

4.1.26.6. SSLLCipherList

The cipher suite list.

Syntax:

property SSLCipherList: String;

Description:

SSLCipherList is a string property that represents the cipher suite list.
The cipher list consists of one or more cipher strings separated by colons. Commas or spaces are also
acceptable separators, but colons are normally used.
If it is not set a default cipher will be used.

Example of usage:

MySQLDatabase1.SSLProperties.SSLCipherList := 'DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA';

Microolap DAC for MySQL, v.3.3.2, Programmer's reference37

© 1999-2021, Microolap Technologies

See also: IsSSLUsed, ConnectOptions SSLCert, SSLKey, SSLCACert, SSLLibName,
SSLCryptoLibName, TLSVersion properties

4.1.26.7. TLSVersion

TLS protocol version.

Syntax:

property TLSVersion: TTLSVersion;
type
TTLSVersion = (tlsAuto, tls1, tls1_1, tls1_2);

Description:

TLSVersion is an enum property that represents the Transport Layer Security (TLS) cryptographic
protocol version that will be used for a session.

tlsAuto
Default and preferred value. Higher possible version is used. For OpenSSL earlier than 1.1 the
tlsAuto = tlsv1_2. Thus, you will need to specify the concrete version in case of lower TLS
version used.

tls1
TLS version 1.0.

tls1_1
TLS version 1.1.

tls1_2
TLS version 1.2.

Don't forget to add MySQLTypes to your uses section.

See also: IsSSLUsed, ConnectOptions SSLCert, SSLKey, SSLCACert, SSLLibName,
SSLCryptoLibName, TLSCipherList properties

4.1.27. TransIsolation

Specifies the transaction isolation level for transactions.

TMySQLDatabase 38

© 1999-2021, Microolap Technologies

Syntax:

type TTransIsolation = (tiDirtyRead,
 tiReadCommitted,
 tiRepeatableRead);
property TransIsolation: TTransIsolation;

Description:

Use TransIsolation to specify the transaction isolation level for database transactions. Transaction
isolation level determines how a transaction interacts with other simultaneous transactions when
they work with the same tables, and how much a transaction sees of the work performed by other
transactions.

TransIsolation can be any one of the three values summarized in the following table:

Isolation level Meaning

tiDirtyRead Permits reading of uncommitted changes made to the database by other
simultaneous transactions. Uncommitted changes are not permanent,
and might be rolled back (undone) at any time. At this level a
transaction is least isolated from the effects of other transactions.

tiReadCommitted Permits reading of committed (permanent) changes made to the
database by other simultaneous transactions. This is the default
TransIsolation property value.

tiRepeatableRead Permits a single, one-time reading of the database. The transaction
cannot see any subsequent changes made by other simultaneous
transactions. This isolation level guarantees that once a transaction
reads a record, its view of that record does not change unless it makes
a modification to the record itself. At this level, a transaction is most
isolated from other transactions.

 Applications that use passthrough SQL for handling transactions must pass a transaction
isolation level directly to the database server using the appropriate SQL statement.

4.1.28. UserName

The user ID with which you log on to the database.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference39

© 1999-2021, Microolap Technologies

Syntax:

property UserName: String;

Description:

You must always supply a user ID when connecting to a database.

See also: DatabaseName, Host, Port, UserPassword properties

4.1.29. UserPassword

To provide a Password for the connection.

Syntax:

property UserPassword: String;

Description:

For security reasons we strongly recommend you to set Password for each user.

 By default MySQL has user root with empty password and server administering rights.
Don't forget to change password for root!

See also: DatabaseName, Host, Port, UserName

4.1.30. Utf8Used

 Since v2.7.0, only for Delphi/C++Builder 2009 and later

Read this property value to ensure that UTF8 character set is used for connection to MySQL server.
This property is read-only.

Syntax:

property Utf8Used: boolean;

Description:

TMySQLDatabase 40

© 1999-2021, Microolap Technologies

DAC for MySQL supports Unicode strings only if connection character set is UTF8. Utf8Used property
is used by DAC for MySQL to enable conversion between UTF8 encoded strings received from server
and Delphi's UnicodeString data type internal representation.

You can set your connection character set using ConnectionCharacterSet property.

Connection character set can be UTF8 even if you don't set TMySQLDatabase.ConnectionCharacterSet
property to 'utf8', e.g. if the server is configured to use UTF8 as default connection character set. You
can use Utf8Used property to ensure that UTF8 character set is used in the connection to MySQL
server.

 Please read this FAQ section if you want to use Unicode strings in your application: How to
use Unicode data in my application?

See also: ConnectionCollation, ConnectionCharacterSet properties

4.1.31. WarningsCount

 Since v2.7.4

Returns number of warnings issued by server for latest query.

Syntax:

property WarningsCount : Word;

Description:

Examine this property value after running query to check if there are any warnings issued by server
for this query. If there are any warnings (WarningsCount > 0) then SHOW WARNINGS query could be
run to retrieve warnings list.

 Warnings are supported since MySQL 4.1. So if you use MySQL version prior to 4.1
WarningsCount property value is always zero.

4.2. Methods

Please see TMySQLDatabase methods short descriptions below:

ApplyUpdates
Reserved for future implementation.

ChangeUser

Microolap DAC for MySQL, v.3.3.2, Programmer's reference41

© 1999-2021, Microolap Technologies

Changes current user and database without re-establishing database connection. MySQL library
mysql_change_user function analog.

Close
Closes the connection.

CloseDataSets
Closes all datasets associated with the database component without disconnecting from the
database server.

Commit
Permanently stores updates, insertions, and deletions of data associated with the current
transaction, and ends the current transactions.

Connect
Connects TMySQLDatabase to MySQL database.

ConnectWithConnectionOptionsDialog
Connects TMySQLDatabase to MySQL database with "MySQL connection options" dialog.

Create
Creates an instance of a TMySQLDataBase component.

Destroy
Destroys the instance of a database component.

Disconnect
Closes connection with database.

Execute
Executes an SQL statement.

GetCharSet
Returns database's code page.

GetClientInfo
Returns a string that represents the client library version.

GetDatabaseCharacterset
Returns character set name string for current database.

GetDatabaseCollation
Returns collation name string for current database.

GetDatabases
Populates a stringlist with the names of persistent MySQL databases.

GetDatabaseSize
Return the current database size in bytes.

GetFieldNames
Populates a string list with the names of fields in a table.

GetFuncNames (deprecated)

TMySQLDatabase 42

© 1999-2021, Microolap Technologies

Returns list of functions available at the moment in the current database.

GetHostInfo
Returns a string describing the type of connection in use. Deprecated method.

GetIdentifier
Returns quoted identifier if server supports backquote character (`).

GetProtoInfo
Returns the protocol version used by current connection.

GetRoutinesNames
Returns list of routines available at the moment in the current database.

GetServerInfo
Returns a server version number string.

GetServerStat
Returns MySQLadmin status info.

GetStoredProcNames (deprecated)
Returns list of stored procedures available at the moment in the current database.

GeTableEngines
Populates a string list with the Engine type of the tables.

GetTableNames
Populates a string list with the names of tables associated with a specified database
component.

Kill
Kills a thread.

Open
Opens the connection.

Ping
Pings MySQL server.

Reconnect
Resets the communication channel to the server.

Rollback
Cancels all updates, insertions, and deletions for the current transaction and ends the
transaction.

SelectXXX
Methods of this group execute SQL Query and return result as single value casted to XXX type.

Shutdown
Stops MySQL server.

StartTransaction
Begins a new transaction against the database server.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference43

© 1999-2021, Microolap Technologies

4.2.1. ApplyUpdates

Reserved for future implementation.

4.2.2. ChangeUser

 Since v2.7.0

Changes current user and database without re-establishing database connection. MySQL library
mysql_change_user function analog.

Syntax:

function ChangeUser(const aNewUserName : string;
 const aUserPassword : string;
 const aDatabaseName : string = '') : boolean;

Description:

Use ChangeUser method to change current user and database for current database connection.

aNewUserName
Name of user to change with.

aUserPassword
Password of user specified in aNewUserName param.

aDatabaseName
Name of database to switch to. If this is empty or omitted then current database remains the
same.

ChangeUser method returns True if current user and/or database was changed successfully. Method
returns False without changing current user and/or database if operation fails.

 Take a look at MySQL library mysql_change_user function description:
http://dev.mysql.com/doc/refman/5.1/en/mysql-change-user.html

4.2.3. Close

Closes the connection.

Syntax:

procedure Close;

http://dev.mysql.com/doc/refman/5.1/en/mysql-change-user.html

TMySQLDatabase 44

© 1999-2021, Microolap Technologies

Description:

Call Close to disconnect from the source of database information. Before the connection component
is deactivated, all associated datasets are closed. Calling Close is the same as setting the Connected
property to False.

In most cases, closing a connection frees system resources allocated to the connection.

 If a previously active connection is closed and then reopened, any associated datasets
must be individually reopened; reopening the connection does not automatically reopen
associated datasets.

4.2.4. CloseDataSets

Closes all datasets associated with the database component without disconnecting from the
database server.

Syntax:

procedure CloseDatasets;

Description:

Call CloseDataSets to close all active datasets without disconnecting from the database server.
Ordinarily, when an application calls Close, all datasets are closed, and the connection to the
database server is dropped.

Calling CloseDataSets instead of Close ensures that an application can close all active datasets
without having to reconnect to the database server at a later time.

4.2.5. Commit

Permanently stores updates, insertions, and deletions of data associated with the current transaction,
and ends the current transactions.

Syntax:

procedure Commit;

Description:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference45

© 1999-2021, Microolap Technologies

Call Commit to permanently store to the database server all updates, insertions, and deletions of
data associated with the current transaction and then end the transaction. The current transaction is
the last transaction started by calling StartTransaction.

 Before calling Commit, an application may check the status of the InTransaction property.
If an application calls Commit and there is no current transaction, an exception is raised.

See also: StartTransaction, Rollback methods, InTransaction property

4.2.6. Connect

 Since v2.5.3

Connects TMySQLDatabase to MySQL database.

Syntax:

procedure Connect;

Description:

Call Connect to set the Connected property for the component to True. When Connected is True,
component is connected to database and ready to exchange data with it.

See also: Connected property and Disconnect method

4.2.7. ConnectWithConnectionOptionsDialog

 Since v2.5.3

Connects TMySQLDatabase to MySQL database with "MySQL connection options" dialog.

Syntax:

function ConnectWithConnectionOptionsDialog : boolean;

Description:

Method returns True if connection was established successfully and False otherwise.

TMySQLDatabase 46

© 1999-2021, Microolap Technologies

Call ConnectWithConnectionOptionsDialog to set the Connected property for the component to
True. This method is similar to Connect method but it shows "MySQL connection options" dialog
before connect to database. This allows to change connection parameters, for example to set
username or password.

See also: Connected property, Connect method, OnLogin event

4.2.8. Create

Creates an instance of a TMySQLDataBase component.

Syntax:

constructor Create(AOwner: TComponent);

Description:

Call Create to instantiate a database component at runtime. An application can create a database
component in order to control the component's existence and set its properties and events, or an
application can let Delphi create temporary database components as needed at runtime.

Create instantiates a database component and:

§ Adds this component to the list of database components.

§ Creates an empty list of dataset components for the. DataSets property.

§ Creates an empty string list for the Params property.

§ Sets the LoginPrompt property and the KeepConnection property to True.

§ Sets the TransIsolation property to tiReadCommitted.

4.2.9. Destroy

Destroys the instance of a database component.

Syntax:

destructor Destroy;

Description:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference47

© 1999-2021, Microolap Technologies

Do not call Destroy directly in an application. Instead, call Free, which verifies that the database
reference is not nil before calling Destroy.

Destroy closes all active datasets and disconnects from the database server, if necessary. It then
frees the string resources allocated for the Params and DataSets properties before calling its
inherited destructor.

4.2.10. Disconnect

 Since v2.5.3

Closes connection with database.

Syntax:

procedure Disconnect;

Description:

Call Disconnect to set the Connected property of a component to False. When Connected is False, the
connection to database is closed.

See also: Connected property and Connect method.

4.2.11. Execute

Executes an SQL statement.

Syntax:

function Execute(const SQL: String;
 Params: TParams = nil;
 Cache: Boolean = False): Integer;

Description:

Use Execute to execute an SQL statement against the database without the overhead of using a
TMySQLQuery object.

SQL
A String value containing the statement to be executed.

Params

TMySQLDatabase 48

© 1999-2021, Microolap Technologies

A value of type TParams and lists any parameters used by the SQL statement. Parameter
binding is by index only (not by name), so the order of parameters is important and the order of
the TParam objects in Params corresponds to the order of the parameters in the SQL
statement. Use properties and methods of TParams to create a TParams object and add one
TParam object for each parameter. Use properties and methods of TParam like the AsString
property to give each parameter a value prior to calling Execute. If the SQL statement does not
include any parameters, pass a nil value for Params.

Cache

Specifies whether the prepared SQL statement is cached for reuse within the current
transaction. Caching statements can speed their processing if they are used more than once in
a transaction.

Execute returns the number of records affected by executing the SQL statement.

 Execute doesn't open or stores any resultsets returned by query. All resultsets are ignored.

See also: SelectXXX methods group

4.2.12. GetCharSet

Returns database code page.

Syntax:

function GetCharSet: TConvertChar;
type
TConvertChar = (ccUndefine,
 cc8859_1,
 cc8859_10,
 cc8859_13,
 cc8859_14,
 cc8859_15,
 cc8859_2,
 cc8859_3,
 cc8859_4,
 cc8859_5,
 cc8859_6,
 cc8859_7,
 cc8859_8,
 cc8859_9,
 ccCp1250,
 ccCp1251,
 ccCp1252,
 ccCp1253,
 ccCp1254,
 ccCp1255,
 ccCp1256,
 ccCp1257,
 ccCp1258,
 ccCp424,

Microolap DAC for MySQL, v.3.3.2, Programmer's reference49

© 1999-2021, Microolap Technologies

 ccCp437,
 ccCp500,
 ccCp737,
 ccCp775,
 ccCp850,
 ccCp852,
 ccCp855,
 ccCp856,
 ccCp857,
 ccCp860,
 ccCp861,
 ccCp862,
 ccCp863,
 ccCp864,
 ccCp865,
 ccCp866,
 ccCp869,
 ccCp874,
 ccCp875,
 ccKoi8_r,
 ccUtf8);

4.2.13. GetClientInfo

Returns a string that represents the client library version.

Syntax:

function GetClientInfo: String;

See also: GetProtoInfo, GetServerInfo, GetServerStat methods, ServerVersion property.

4.2.14. GetDatabaseCharacterset

 Since v2.6.0

Returns character set name string for current database.

Syntax:

function GetDatabaseCharacterset: String;

Description:

GetDatabaseCharacterset method returns character set name as it have been reported by server. For
example: cp1251.

TMySQLDatabase 50

© 1999-2021, Microolap Technologies

This method returns 'character_set' server variable's value for MySQL earlier than 4.1.1 and
character_set_database server variable value for MySQL greater than 4.1.1

 Please read this FAQ section if you want to use Unicode strings in your application: How to
use Unicode data in my application?

See also: GetDatabaseCollation method

4.2.15. GetDatabaseCollation

 Since v2.6.0

Returns collation name string for current database.

Syntax:

function GetDatabaseCollation: String;

Description:

GetDatabaseCollation method returns collation name as it have been reported by server. For
example: cp1251_general_cs.

 This method returns 'collation_database' server variable value for MySQL greater than
4.1.1 and empty string value for MySQL earlier 4.1.1

See also: GetDatabaseCharacterset method

4.2.16. GetDatabases

Populates a stringlist with the names of persistent MySQL databases.

Syntax:

procedure GetDabases(Pattern: String; List : TStrings);

4.2.17. GetDatabaseSize

Return the current database size in bytes.

Syntax:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference51

© 1999-2021, Microolap Technologies

function GetDatabaseSize : Int64;

Description:

Use these method to get the size current database in bytes. If there is no connection to the database,
the function returns 0.

Exampls:

ShowMessage('Size current database is ' +
IntToStr(MySQLDatabase1.GetDatabaseSize)
 + ' bytes');

4.2.18. GetFieldNames

Populates a string list with the names of fields in a table.

Syntax:

procedure GetFieldNames(const TableName: String;
 List: TStrings);

Description:

Call GetFieldNames to retrieve a list of fields in a table.

TableName
Names the table whose field names you want added to the list.

List
A TStrings descendant that receives the field names. Any existing strings are deleted from the
list before GetFieldNames adds the names of all the fields in TableName.

Example:

The following line fills a list box with the names of all fields in the table:

Database1.GetFieldNames('Employee', ListBox1.Items);

4.2.19. GetFuncNames

Returns list of functions available at the moment in the current database.

TMySQLDatabase 52

© 1999-2021, Microolap Technologies

This procedure is deprecated. Please use GetRoutinesNames instead.

Syntax:

GetFuncNames(Pattern: string; List: TStrings);

Parameters:

Pattern
Use Pattern parameter to set wildcard matching for functions names.

List
A string list object, created and maintained by the application, in which the functions names
will be return to.

Description:

Call GetFuncNames to obtain available functions list. Strings are sorted by names.

Example:

var str:string; list:TStringList; i:integer;
 begin
 MySQLDatabase1.GetFuncNames('', list);
 str := 'Existing functions:'+#13#10;
 for i := 0 to list.Count-1 do
 str := str + ' ' + list[i] + #13#10;
 ShowMessage(str);
 end;

4.2.20. GetHostInfo

 Deprecated method

Returns a string describing the type of connection in use, including the server host name.

Syntax:

function GetHostInfo: String;

Description:

Returns an empty string for latest DAC for MySQL versions.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference53

© 1999-2021, Microolap Technologies

See also: GetProtoInfo, GetServerInfo, GetServerStat, GetClientInfo methods, ServerVersion
property.

4.2.21. GetIdentifier

 Since v2.6.0

Returns quoted identifier if server supports backquote character (`).

Syntax:

function GetIdentifier(aIdentName : string) : string;

Description:

GetIdentifier method returns value of aIdentName parameter quoted with backquote characters (`) if
server version is equal or greater 3.23.6. This method is useful if you want to ensure, that your
identifier is acceptable for server.

Example:
var s, r : string;
...
s := 'MyTableName';
r := mySQLDatabase1.GetIdentifier(s);

Value of r variable will remain MyTableName for MySQL before 3.23.6 and will be `MyTableName`
otherwise.

4.2.22. GetProtoInfo

Returns the protocol version used by current connection.

Syntax:

function GetProtoInfo: Cardinal;

See also: GetServerInfo, GetServerStat, GetClientInfo methods, ServerVersion property.

4.2.23. GetRoutinesNames

Returns list of routines available at the moment in the current database.

TMySQLDatabase 54

© 1999-2021, Microolap Technologies

Syntax:

GetRoutinesNames(Pattern: string; List: TStrings; SrtType:
TMySQLSelectRoutinesType = srtAll);
TMuSQLSelectRoutinesType = (srtProc, srtFunc, srtAll);

Parameters:

Pattern
Use Pattern parameter to set wildcard matching for functions names.

List
A string list object, created and maintained by the application, in which the functions names
will be return to.

SrtType
Specifies which type of routines will be returns.

Description:

Call to GetRoutinesNames to obtain available routines list. Strings are sorted by names.

Example:

var str:string; list:TStringList; i:integer;
 begin
 MySQLDatabase1.GetRoutinesNames('', list, TMySQLSelectRoutinesType.srtFunc);
 str := 'Existing functions:'+#13#10;
 for i := 0 to list.Count-1 do
 str := str + ' ' + list[i] + #13#10;
 ShowMessage(str);
 end;

4.2.24. GetServerInfo

Returns the server version string.

Syntax:

function GetServerInfo: String;

Description:

GetServerInfo method returns version number string as it have been reported by server. For example:
5.1.11-beta.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference55

© 1999-2021, Microolap Technologies

See also: GetProtoInfo, GetServerStat, GetClientInfo methods, ServerVersion property.

4.2.25. GetServerStat

Returns MySQLadmin status info.

Syntax:

function GetServerStat: String;

Description:

Returns a character string containing information similar to that provided by the MySQLadmin status
command. This string includes uptime in seconds and the numbers of:

§ Running threads;

§ Questions;

§ Reloads;

§ Open tables.

See also: GetProtoInfo, GetServerInfo, GetClientInfo methods, ServerVersion property.

4.2.26. GetStoredProcNames

Returns list of stored procedures available at the moment in the current database.

This procedure is deprecated. Please use GetRoutinesNames instead.

Syntax:

GetStoredProcNames(Pattern: string; List: TStrings);

Parameters:

Pattern
Use Pattern parameter to set wildcard matching for procedure names.

List
A string list object, created and maintained by the application, in which the stored procedures
names will be return to.

TMySQLDatabase 56

© 1999-2021, Microolap Technologies

Description:

Call GetStoredProcNames to obtain available stored procedures list. Strings are sorted by names.

Examples:

var str:string; list:TStringList; i:integer;
 begin
 MySQLDatabase1.GetStoredProcNames('', list);
 str := 'Existing procedures:'+#13#10;
 for i := 0 to list.Count-1 do
 str := str + ' ' + list[i] + #13#10;
 ShowMessage(str);
 end;

4.2.27. GetTableEngines

Populates a string list with the Engine type of the tables.

Syntax:

procedure GetTableEngines(TableList: TStrings; TableEnginesList: TStrings);

Parameters:

TableList
A string list object with tables for which you need to know Engine type.

TableEnginesList
A string list object in which the Engine type of the tables will be return.

Description:

Call to GetTableEngines to obtain tables Engine type. TableEnginesList must be previously
created.

4.2.28. GetTableNames

Populates a string list with the names of tables associated with a specified database component.

Syntax:

procedure GetTableNames(Pattern: String; List: TStrings);

Microolap DAC for MySQL, v.3.3.2, Programmer's reference57

© 1999-2021, Microolap Technologies

Description:

Call GetTableNames to retrieve a list of the tables associated with a given database.

Pattern specifies a delimiter string that restricts the tables returned to those that match the string.
Pattern can include wildcard symbols. Pass an empty Pattern string to match all tables not restricted
by other criteria.

List is a string list object, created and maintained by the application, into which to return the table
names.

4.2.29. Kill

Kills a thread.

Syntax:

procedure Kill(PID : Integer);

Description:

Asks the server to kill the thread specified by PID.

4.2.30. Open

Opens the connection.

Syntax:

procedure Open;

Description:

Call Open to establish a connection to the source of database information. Open sets the Connected
property to True.

4.2.31. Ping

Pings MySQL server.

Syntax:

TMySQLDatabase 58

© 1999-2021, Microolap Technologies

function Ping : Integer;

Description:

Checks if the connection to the server is working. If it has gone down, an automatic reconnection is
attempted. Returns 1 if the server is alive and 0 if an error occurred.

 Negative result (0) does not indicate whether the MySQL server itself is down; the
connection might be broken for other reasons such as network problems.

 This function can be used by clients that remain idle for a long time to check if the server
has closed the connection and reconnect if necessary.

4.2.32. Reconnect

Resets the communication channel to the server.

Syntax:

procedure Recconnect;

Description:

This function will close the connection to the server and attempt to reestablish a new connection to
the same server, using all the same parameters previously used. This may be useful for error recovery
if a working connection is lost.

When calls Reconnect generated event OnReconnect.

Before calling Reconnect, TMySQLDatabase must be Connected to server. This means that
TPSQLDatabase.Open method was called before, or property Connected was set to True. If an
application calls Reset and there was no active connection, an exception is raised.

See also: TMySQLDatabase.Events.OnReconnect

4.2.33. Rollback

Cancels all updates, insertions, and deletions for the current transaction and ends the transaction.

Syntax:

procedure Rollback;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference59

© 1999-2021, Microolap Technologies

Description:

Call Rollback to cancel all updates, insertions, and deletions for the current transaction and to end
the transaction. The current transaction is the last transaction started by calling StartTransaction.

 Before calling Rollback, an application may check the status of the InTransaction property.
If an application calls Rollback and there is no current transaction, an exception is raised.

See also: Commit, StartTransaction methods InTransaction property

4.2.34. SelectXxx

 Since v2.5.5, v2.6.1 (SelectInt64 and SelectDateTime)

Methods of this group execute SQL query and return result as single value casted to XXX type.

Syntax:

function SelectString(aSQL : string; var IsOk : boolean; aFieldNumber : integer =
0):string;
function SelectString(aSQL : string; var IsOk : boolean; aFieldName :
string):string;overload;
function SelectStringDef(aSQL : string; aDefaultValue : string; aFieldNumber :
integer = 0):string;
function SelectStringDef(aSQL : string; aDefaultValue : string; aFieldName :
string):string;
function SelectInteger(aSQL : string; var IsOk : boolean; aFieldNumber : integer
= 0):integer;
function SelectInteger(aSQL : string; var IsOk : boolean; aFieldName :
string):integer;
function SelectIntegerDef(aSQL : string; aDefaultValue : integer; aFieldNumber :
integer = 0):integer;
function SelectIntegerDef(aSQL : string; aDefaultValue : integer; aFieldName :
string):integer;
function SelectInt64(aSQL : string; var IsOk : boolean; aFieldNumber : integer =
0):int64;
function SelectInt64(aSQL : string; var IsOk : boolean; aFieldName :
string):int64;
function SelectInt64Def(aSQL : string; aDefaultValue : int64; aFieldNumber :
integer = 0):int64;
function SelectInt64Def(aSQL : string; aDefaultValue : int64; aFieldName :
string):int64;
function SelectDouble(aSQL : string; var IsOk : boolean; aFieldNumber : integer =
0):double;
function SelectDouble(aSQL : string; var IsOk : boolean; aFieldName :
string):double;
function SelectDoubleDef(aSQL : string; aDefaultValue : double; aFieldNumber :
integer = 0):double;

TMySQLDatabase 60

© 1999-2021, Microolap Technologies

function SelectDoubleDef(aSQL : string; aDefaultValue : double; aFieldName :
string):double;
function SelectDateTime(aSQL : string; var IsOk : boolean; aFieldNumber : integer
= 0):TDateTime;
function SelectDateTime(aSQL : string; var IsOk : boolean; aFieldName :
string):TDateTime;
function SelectDateTimeDef(aSQL : string; aDefaultValue : TDateTime; aFieldNumber
: integer = 0):TDateTime;
function SelectDateTimeDef(aSQL : string; aDefaultValue : TDateTime; aFieldName :
string):TDateTime;

Description:

Use these methods to execute an SQL statement against the database without the overhead of using
a TMySQLQuery object. Methods return single value as a value of the field specified by number
(aFieldNumber parameter) or by name (aFieldName parameter) in the first row of the first resultset.
If the aFieldNumber parameter is omitted, methods return the value of the first field.

If the query doesn't return at least one row or specified field is not found, the IsOk param is set to
False (SelectXxx methods) or aDefaultValue param value is returned (SelectXxxDef methods).

Parameters:

aSQL
A String value containing the statement to be executed.

IsOk
(SelectXxx methods) variable is set to True after successful execution, or False if requested
value couldn't be fetched.

aDefaultValue
(SelectXxxDef methods) value to return by method if requested value can't be fetched.

aFieldNumber
Field number to return its value by method. Fields are numbered from zero. If this parameter is
omitted, then it is assumed to be 0. In this case the value of the first field will be returned.

aFieldName
Field name to return its value by method.

Examples:

This example will show MySQL server version (like TMySQLDatabase.GetServerInfo method):

ShowMessage(mySQLDatabase1.SelectStringDef('SELECT version', 'Something wrong
happend!'));

This example will show current UNIX timestamp value returned by MySQL server:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference61

© 1999-2021, Microolap Technologies

ShowMessage(IntToStr(mySQLDatabase1.SelectIntDef('SELECT unix_timestamp', -1)));

See also: Execute method

4.2.35. Shutdown

Stops MySQL server.

Syntax:

function Shutdown: integer;

Description:

If the function succeeds, the returned value is "0", or any other value on error.

 Connected user must have SHUTDOWN rights.

4.2.36. StartTransaction

Begins a new transaction against the database server.

Syntax:

procedure StartTransaction;

Description:

Call StartTransaction to begin a new transaction against the database server. Before calling
StartTransaction, an application should check the status of the InTransaction property and adjust the
setting of the TransIsolation property as desired.

If InTransaction is True, indicating that a transaction is already in progress, a subsequent call to
StartTransaction without first calling Commit or Rollback to end the current transaction raises an
exception.

Updates, insertions, and deletions that take place after a call to StartTransaction are held by the
server until an application calls Commit to save the changes or Rollback is to cancel them.

See also: Commit, Rollback methods InTransaction property

TMySQLDatabase 62

© 1999-2021, Microolap Technologies

4.3. Events

Please see TMySQLDatabase events short descriptions below:

AfterConnect
Occurs after a connection is established.

AfterDisconnect
Occurs after the connection closes.

BeforeConnect
Occurs immediately before establishing a connection.

BeforeDisconnect
Occurs immediately before the connection closes.

OnConnectionFailure
Occurs on a database connection error.

OnLogin
Occurs when an application connects to a database.

OnReconnect
Occurs after a connection is silently re-established after connection failure.

4.3.1. AfterConnect

Occurs after a connection is established.

Syntax:

property AfterConnect: TNotifyEvent;

Description:

Write an AfterConnect event handler to take application-specific actions immediately after the
connection component opens a connection to the source of database information.

4.3.2. AfterDisconnect

Occurs after the connection closes.

Syntax:

property AfterDisconnect: TNotifyEvent;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference63

© 1999-2021, Microolap Technologies

Description:

Write an AfterDisconnect event handler to take application-specific actions after the connection
component drops a connection.

4.3.3. BeforeConnect

Occurs immediately before establishing a connection.

Syntax:

property BeforeConnect: TNotifyEvent;

Description:

Write a BeforeConnect event handler to take application-specific actions before the connection
component opens a connection to the source of database information.

4.3.4. BeforeDisconnect

Occurs immediately before the connection closes.

Syntax:

property AfterDisconnect: TNotifyEvent;

Description:

Write a BeforeDisconnect event handler to take application-specific actions before dropping a
connection.

4.3.5. OnConnectionFailure

Occurs on a database connection error.

Syntax:

type TConnectionFailureEvent = procedure(Connection : TMySQLDatabase;
 Error : String) of Object;
property OnConnectionFailure : TConnectionFailureEvent;

TMySQLDatabase 64

© 1999-2021, Microolap Technologies

Description:

Write an ConnectionFailure event handler to take specific actions when a database connection error
occurs.

4.3.6. OnLogin

Occurs when an application connects to a database.

Syntax:

type
 TMySQLDataBaseLoginEvent = procedure(Database: TMySQLDataBase;
 LoginParams: TStrings)of object;
property OnLogin: TMySQLDataBaseLoginEvent;

Description:

Write an OnLogin event handler to take specific actions when an application attempts to connect to a
database. By default, a database login is required. The current USERNAME is read from the Params
property, and a standard Login dialog box opens. The dialog prompts for a user name and password
combination, and then uses the values entered by the user to set the UID and PWD values in the
Params property. These values are then passed to the remote server.

Applications that provide alternative OnLogin event handlers must set the UID and PWD values in
LoginParams. LoginParams is a temporary string list and is freed automatically when no longer
needed.

This event handler is called only if LoginPrompt property value is True.

Example:

procedure TForm1.mySQLDatabase1Login(Database: TMySQLDatabase; LoginParams:
TStrings);
var
 vUserName, vPassword : string;
begin
 vUserName := 'root'; //most probably you want to ask user for user
name and password
 vPassword := 'strongpassword'; //with some GUI instead of just assigning it
here
 LoginParams.Add('UID=' + vUserName);
 LoginParams.Add('PWD=' + vPassword);
end;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference65

© 1999-2021, Microolap Technologies

 Another way to ask user for username and password is to call
ConnectWithConnectionOptionsDialog method

See also: LoginPrompt property, ConnectWithConnectionOptionsDialog method

4.3.7. OnReconnect

 Since v2.6.1

Occurs after a connection is silently re-established after connection failure.

Syntax:

TReconnectEvent = procedure(Connection : TMySQLDatabase) of Object;
property OnReconnect: TReconnectEvent;

Description:

Write an OnReconnect event handler to take application-specific actions when a connection to
database server was dropped and restored for some reasons (for example due to network fail). If
TMySQLDatabase components detects connection failure it tries to re-establish it silently. Usually you
don't have to worry about this. But this event may be very useful if your application depends on
temporary tables which will be dropped after such re-connect.

5. TMySQLDataset

TMySQLDataset encapsulates database connectivity for descendant dataset objects.

TMySQLDataSet defines database-related connectivity properties and methods for a dataset.

Applications never use TMySQLDataset objects directly. Instead they use the descendants of
TMySQLDataSet, such as TMySQLQuery, TMySQLTable and TMySQLStoredProc, which inherit its
database-related properties and methods.

 TMySQLDataset descendants provide BDE-like functionality and fully compatible with
TDatasource and visual DB-controls. If you need to fetch some data without displaying them
you can use high-performance TMySQLDirectQuery component.

See also: Properties, Methods, Events

TMySQLDataset 66

© 1999-2021, Microolap Technologies

5.1. Properties

Please see TMySQLDataset properties short descriptions below:

Derived from TDataSet:

Active
Specifies whether or not a dataset is open.

AutoCalcFields
Determines when the OnCalcFields event is triggered.

Bof
Indicates whether or not a cursor is positioned at the first record in a dataset.

Bookmark
Specifies the current bookmark in the dataset.

CachedUpdates
Does not affect on dataset behavior.

CanModify
Indicates whether the database underlying a dataset permits write access to data..

DefaultFields
Indicates whether a dataset's underlying field components are generated dynamically when the
dataset is opened.

Eof
Indicates whether or not a cursor is positioned at the last record in a dataset.

FieldCount
Indicates the number of field components associated with the dataset.

FieldDefList
Points to the list of field definitions for the dataset.

FieldList
Lists the field components of a dataset.

Fields
Lists all non-aggregate field components of the dataset.

FieldValues
Provides access to the values for all fields in the active record for the dataset.

Found
Indicates whether or not moving to a different record is successful.

Modified
Indicates whether the active record is modified.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference67

© 1999-2021, Microolap Technologies

Name
Designates the name of the dataset as referenced by other components.

ObjectView
Specifies whether fields are to be stored hierarchically or flattened out in the Fields property.

SparseArrays
Determines whether a unique TField object is created for each element of an array field.

State
Indicates the current operating mode of the dataset.

In TMySQLDataSet:

AllowSequenced
Determines that database records can be located by sequence numbers.

AutoRefresh
Specifies whether server-generated field values are refetched automatically.

AvailableResultsetCount
Indicates count of resultsets available to fetch from multiresultset query or stored procedure.
This property is useful when query or stored procedure returns more than one dataset.

BlockReadSize
Determines how many record buffers are read in each block.

CacheBlobs
Determines whether BLOB fields are cached in memory.

Database
Specifies the database component for which this dataset represents one or more tables.

Filter
Specifies the text of the current filter for a dataset.

Filtered
Specifies whether filtering is active for a dataset.

FilterOptions
Specifies whether filtering is case insensitive, and whether or not partial comparisons are
permitted when filtering records.

KeySize
Specifies the size of the key for the current index of the dataset.

LastInsertID
Get last inserted value of AUTO_INCREMENT column from MySQL server

MultiResultsetNo
Specifies the resultset to associate with component when it become active.

TMySQLDataset 68

© 1999-2021, Microolap Technologies

RecNo
Indicates the current record in the dataset.

RecordCount
Indicates the total number of records associated with the dataset.

RecordSize
Indicates the size of a record in the dataset.

RefreshDelete
Specifies whether a dataset should delete a record locally when a database record is not found
at refreshing.

SortFieldNames
Specifies field names and sorting order to sort opened dataset by these fields on the client side
without refetching data from server.

StatementID
Returns the statement id of the prepared query.

UpdateMode
Determines how MySQL finds records when updating to an SQL database.

UpdateObject
Specifies the update object component used to update a read-only result set.

5.1.1. Active

Specifies whether or not a dataset is open.

Syntax:

property Active: Boolean;

Description:

Use Active to determine or set a dataset's connection to data in a database. When Active is False,
the dataset is closed; the dataset cannot read data from or write data to the database. When Active
is True, data can be read from and written to the database.

Setting Active to True:

§ Triggers the BeforeOpen event handler if one is defined for the dataset.

§ Sets the dataset state to dsBrowse.

§ Opens a cursor into the dataset.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference69

© 1999-2021, Microolap Technologies

§ Triggers the AfterOpen event handler if one is defined for the dataset.

§ If an error occurs while opening the dataset, dataset state is set to dsInactive, and the cursor is
closed.

An application must set Active to False before changing other properties that affect the status of the
database or the controls that display data in an application.

 Calling the Open method sets Active to True; calling the Close method sets Active to
False.

5.1.2. AllowSequenced

Determines that database records can be located by sequence numbers.

Syntax:

property AllowSequenced: Boolean;

Description:

AllowSequenced determines that database records can be located by sequence numbers. When
AllowSequenced is True, the dataset can navigate directly to a specific record by setting the RecNo
property.

If AllowSequenced is False, the only way to navigate to a specific record is to start at the beginning
and count records. AllowSequenced indicates whether sequence numbers are available for database
records.

5.1.3. AutoCalcFields

Determines when the OnCalcFields event is triggered.

Syntax:

property AutoCalcFields: Boolean;

Description:

Set AutoCalcFields to control when the OnCalcFields event is triggered to update calculated fields
during dataset processing. A calculated field is one that derives its value from the values of one or
more fields in the active record, sometimes with additional processing.

TMySQLDataset 70

© 1999-2021, Microolap Technologies

When AutoCalcFields is True (the default), OnCalcFields is triggered when:

§ The dataset is opened.

§ The dataset is put into dsEdit state.

§ Focus moves from one visual control to another, or from one column to another in a data-aware
grid and modifications were made to the record.

§ A record is retrieved from a database.

If an application permits users to change data, OnCalcFields is frequently triggered. In these cases an
application may set AutoCalcFields to False to reduce the frequency with which AutoCalcFields is
called. When AutoCalcFields is False, OnCalcFields is not called when changes are made to individual
fields within a record.

5.1.4. AutoRefresh

Specifies whether server-generated field values are refetched automatically.

Syntax:

property AutoRefresh: Boolean;

Description:

When AutoRefresh is False (the default), values that the server creates for autoincrement fields and
fields with default values when a record is posted are not automatically refetched by the dataset.
Instead, the application must call the dataset's Refresh method to update these field values. When
AutoRefresh is True, these field values are automatically refreshed without an explicit call to the
Refresh method.

5.1.5. AvailableResultsetCount

 Since v2.5.3

Indicates count of resultsets available to fetch from multiresultset query or stored procedure. This
property is useful when query or stored procedure returns more than one dataset.

Syntax:

property AvailableResultsetCount : integer

Microolap DAC for MySQL, v.3.3.2, Programmer's reference71

© 1999-2021, Microolap Technologies

Description:

Inspect AvailableResultsetCount property to check number of available resultsets returned from
multiresultset query or stored procedure. This property is 0 for closed dataset and it is always 1 for
opened TMySQLTable components. You can use MultiResultsetNo property to fetch other resultset
than first for TMySQLQuery and TMySQLStoredProc components.

See also: MultiResultsetNo property

5.1.6. BlockReadSize

Determines how many record buffers are read in each block.

Syntax:

property BlockReadSize: Integer;

Description:

Set BlockReadSize when you need to scan through the entire dataset quickly. When BlockReadSize is
greater than zero, and Next is called, data-aware controls are not updated, and data events are not
triggered. Set BlockReadSize to zero to disable block read mode. The dataset State is dsBlockRead
when BlockReadSize is greater than zero.

5.1.7. Bof

Indicates whether or not a cursor is positioned at the first record in a dataset.

Syntax:

property Bof: Boolean;

Description:

Test Bof (beginning of file) to determine if the cursor is positioned at the first record in a dataset. If
Bof is True, the cursor is unequivocally on the first row in the dataset.

Bof is True when an application:

§ Opens a dataset.

TMySQLDataset 72

© 1999-2021, Microolap Technologies

§ Calls a dataset's First method.

§ Call a dataset's Prior method, and the method fails (because the cursor is already on the first
row in the dataset).

§ Calls SetRange on an empty range or dataset.

Bof is False in all other cases.

See also: Example: GetBookmark, GotoBookmark,FreeBookmark, FindPrior, Value,
OnDataChange,BOF

5.1.8. Bookmark

Specifies the current bookmark in the dataset.

Syntax:

type TBookmarkStr: String;
property Bookmark: TBookmarkStr;

Description:

Bookmark gets or sets the current bookmark in a dataset. A bookmark marks a location in a dataset
so that an application can easily return to that location quickly.

An application can read Bookmark to retrieve the bookmark associated with the current record, and it
can position the cursor in the dataset by assigning a saved bookmark value to this property.

5.1.9. CacheBlobs

Determines whether BLOB fields are cached in memory.

Syntax:

property CacheBlobs: Boolean;

Description:

Use CacheBlobs to specify whether or not to store BLOB images in memory to improve performance
when scrolling through records that display BLOB images. CacheBlobs is True by default, meaning
that BLOBs are cached in memory. If an application does not need to display the BLOBs associated
with records, then set CacheBlobs to False to conserve system resources.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference73

© 1999-2021, Microolap Technologies

5.1.10. CachedUpdates

Does not affect on dataset behavior!

Syntax:

property CachedUpdates: Boolean;

Description:

DAC for MySQL does not support cached updates at all. This property was leaved only for
compatibility with BDE classes. Setting it to True does not affect dataset behavior at all.

5.1.11. CanModify

Indicates whether the database underlying a dataset permits write access to data.

Syntax:

property CanModify: Boolean;

Description:

Examine CanModify to determine if the database underlying a dataset permits write access to data.
When a database connection is established, a dataset typically requests write access. CanModify
indicates whether or not write access is granted. If CanModiy is True, data can be modified and
written to the database server. If CanModify is False, data can be viewed, but not modified.

You can set RequestLive property of TMySQLQuery component to True to try to get "live" (updatable)
resultset from SQL query.

See also: TMySQLQuery.RequestLive property

5.1.12. Database

Specifies the TMySQLDatabase component this component connects to to perform database
operations.

Syntax:

property Database: TMySQLDatabase;

TMySQLDataset 74

© 1999-2021, Microolap Technologies

Description:

Use Database property to access the connection and some other properties, events, and methods of
the database component associated with this dataset.

In design-time you may choose database from drop-down list for given MySQLTable or MySQLQuery.

 Since v2.7.1 DAC for MySQL tries to assign this property value to last added
TMySQLDatabase component in design-time.

Example:

// Do a transaction
with MySQLTable1.Database do
begin
 StartTransAction;
 // transactions supporting depends on table's type.
 // MyISAM tables (default type in MySQL) don't
 // support transactions, InnoDB, Falcon and BDB tables do.
 // Post some records with MySQLTable1
 Commit;
end;

See also: TMySQLDatabase component

5.1.13. DefaultFields

Indicates whether a dataset's underlying field components are generated dynamically when the
dataset is opened.

Syntax:

property DefaultFields Boolean;

Description:

Read DefaultFields to determine whether a dataset uses dynamically generated field components or
persistent field components. If DefaultFields is True, the dataset uses dynamically allocated field
components. If DefaultFields is False, the dataset uses persistent field components.

Unless persistent field components are assigned to a dataset at design time using the Fields editor,
the dataset creates dynamic field components based on the structure of its underlying database table
or tables when it is opened.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference75

© 1999-2021, Microolap Technologies

5.1.14. Eof

Indicates whether or not a cursor is positioned at the last record in a dataset.

Syntax:

property Eof: Boolean;

Description:

Test Eof (end-of-file) to determine if the cursor is positioned at the last record in a dataset. If Eof is
True, the cursor is unequivocally on the last row in the dataset.

Eof is True when an application:

§ Opens an empty dataset.

§ Calls a dataset Last method.

§ Call a dataset Next method, and the method fails (because the cursor is already on the last row
in the dataset).

§ Calls SetRange on an empty range or dataset.

Eof is False in all other cases.

 If both Eof and Bof are True, the dataset or range is empty.

See also: Example: DisableControls, EnableControls, Eof

5.1.15. FetchOnDemand

Specifies whether the rows transferred across the network by portions.

Syntax:

property FetchOnDemand : boolean default false;

Description:

Use FetchOnDemand property to activate the rows transfer across the network by portions specified
by FetchRows property.

TMySQLDataset 76

© 1999-2021, Microolap Technologies

When setting FetchOnDemand = True please keep in mind that DAC for MySQL will create additional
session in order not to block current session. But this can cause the following problems:

§ Each additional session runs outside of the transaction context, thus TmySQLDatabase.Commit
and TmySQLDatabase.Rollback operations in main session won't apply changes made in
additional sessions.

§ Temporary tables created in one session are not accessible from other sessions, therefore
simultaneous using of FetchOnDemand = True and temporary tables is impossible.

See also: FetchRows property

5.1.16. FetchRows

Specifies the number of rows to be transferred across the network at the same time.

Syntax:

property FetchRows : integer default 25;

Description:

Use FetchRows property for specifying the number of rows to be transferred across the network at
the same time when FetchOnDemand = True.

See also: FetchOnDemand property

5.1.17. FieldCount

Indicates the number of field components associated with the dataset.

Syntax:

property FieldCount: Integer;

Description:

Examine FieldCount to determine the number of fields listed by the Fields property. For datasets with
dynamically created fields, FieldCount may differ each time a dataset is opened. For datasets with
persistent fields, FieldCount should be unchanged each time a dataset is open.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference77

© 1999-2021, Microolap Technologies

 FieldCount includes only the fields listed by the Fields property.

See also: Example: FieldCount, Fields, FieldName

5.1.18. FieldDefList

Points to the list of field definitions for the dataset.

Syntax:

property FieldDefList: TFieldDefList;

Description:

FieldDefList points to an internal list of field definitions for the dataset. FieldDefList represents a
flattened view of the data, meaning that object fields in the dataset may be represented by several
simple field definitions that represent the constituents of the object field. To determine the
definitions in a hierarchical view, use FieldDefs instead.

To access fields and field values in a dataset, use the Fields, and FieldValues properties, and the
FieldByName method.

5.1.19. FieldList

Lists the field components of a dataset.

Syntax:

property FieldList: TFieldList;

Description:

FieldList contains the names of all field components in the dataset. The fields are stored sequentially,
or flattened out, meaning any child fields of an object field are stored as siblings in the
TFieldList.Fields array.

5.1.20. Fields

Lists all non-aggregate field components of the dataset.

Syntax:

TMySQLDataset 78

© 1999-2021, Microolap Technologies

property Fields: TFields;

Description:

Use Fields to access field components. If fields are generated dynamically at runtime, the order of
field components in Fields corresponds directly to the order of columns in the table or tables
underlying a dataset. If a dataset uses persistent fields, then the order of field components
corresponds to the ordering of fields specified in the Fields editor at design time.

When ObjectView is True, the fields are stored hierarchically, meaning any child fields of an object
field are referenced by the object field and don't appear sequentially after the object field in the
TFields.Fields array. When ObjectView is False, the fields are stored sequentially, or flattened out,
meaning any child fields of an object field are stored sequentially in the TFields.Fields array.

Accessing fields with the Fields property is useful for applications that:

§ Iterate over some or all fields in a dataset.

§ Work with underlying tables whose internal data structure is unknown at runtime.

If an application knows the data types of individual fields, then it can read or write individual field
values through the Fields property. For example, the following statement assigns a field value to the
Text property of an edit box:

Edit1.Text := CustMySQLTable.Fields.Fields[6].AsString;

 The preferred method for retrieving and assigning field values is to use persistent fields or
the FieldByName method.

The following statements assign a value from an edit box to a field:

CusTMySQLTable.Edit;
CusTMySQLTable.Fields.Fields[6].AsString := Edit1.Text;
CusTMySQLTable.Post;

See also: Example: FieldCount,Fields,FieldName

5.1.21. FieldValues

Provides access to the values for all fields in the active record for the dataset.

Syntax:

property FieldValues[const FieldName: String]: Variant; default;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference79

© 1999-2021, Microolap Technologies

Description:

Use FieldValues to read and write values for fields in a dataset. FieldName is the name of a field to
read from or write to.

FieldValues reads from and writes to fields whether FieldName represents simple field names,
qualified field names for subfields of an object field. Because of this flexibility, it is often preferable
to use the FieldValues property (or the FieldByName method) rather than the Fields, FieldList
properties, all of which present a more limited selection of the dataset's fields.

FieldValues accepts and returns a Variant, so it can handle and convert fields of any type. Because
FieldValues is the default property for TDataSet, you can omit the property name when referencing
this property. For example, the following statements are semantically identical and write the value
from an edit box into an integer field:

Customers.FieldValues['CustNo'] := Edit1.Text;
Customers['CustNo'] := Edit1.Text;

The following statement reads a string value from a field into an edit box:

Edit1.Text := Customers['Company'];

 Because FieldValues always uses Variants, it may be a somewhat slower method of
accessing data, than using a field native format (i.e., using a field b property), especially in
applications that process large amounts of data.

See also: Example: Append, FieldValues, Post

5.1.22. Filter

Specifies the text of the current filter for a dataset.

Syntax:

property Filter: String;

Description:

Use Filter to specify a dataset filter. When filtering is applied to a dataset, only those records that
meet a filter's conditions are available to an application. Filter contains the string that describes the
filter condition.

TMySQLDataset 80

© 1999-2021, Microolap Technologies

For example, the following filter condition displays only those records where the State field is 'CA' or
'MA':

State = 'CA' or State = 'MA'

Since DAC for MySQL v2.6.3 Filter property supports extended syntax:

§ LIKE operator support.

§ Sets of characters inside square brackets, e.g. [azAz], [a-dA-D].

§ Exclamation sign (!) inside set indicates that any character should be matched except for those
in set.

§ Wildcard '%' matches any number of characters.

§ A question mark '?' matches a single arbitrary character.

For example:

State LIKE '[mt]%' - will give us Montana, Texas, Michigan etc.
State LIKE '[!mt]%' - will give us all except states where first letter is 'm' or
't'

 Applications can set Filter at runtime to change the filtering condition for a dataset at (for
example, in response to user input).

5.1.23. Filtered

Specifies whether filtering is active for a dataset.

Syntax:

property Filtered: Boolean;

Description:

Check Filtered to determine whether or not dataset filtering is in effect. If Filtered is True, then
filtering is active. Otherwise Filtered is False. To apply filter conditions specified in the Filter property
or the OnFilterRecord event handler, set Filtered to True.

 When filtering is enabled, user edits to a record may mean that the record no longer meets
a filter's test condition. The next time the record is retrieved from the dataset while the filter
is in effect, the record may seem to disappear. If that happens, the next record that passes
the filter condition becomes the current record.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference81

© 1999-2021, Microolap Technologies

5.1.24. FilterOptions

Specifies whether filtering is case insensitive, and whether or not partial comparisons are permitted
when filtering records.

Syntax:

property FilterOptions: TFilterOptions;

Description:

Set FilterOptions to specify whether or not filtering is case insensitive when filtering on string or
character fields, and whether or not partial comparisons for matching filter conditions is allowed.

By default, FilterOptions is set to an empty set. For filters based on string fields, include
foCaseInsensitive in FilterOptions to catch all variations on a string regardless of capitalization.

To prevent partial string comparisons, include foNoPartialCompare in FilterOptions.

 To filter strings bases on partial comparisons, exclude foNoPartialCompare from
FilterOptions and use an asterisk as a wildcard.

For example:

State = 'M*'

5.1.25. Found

Indicates whether or not moving to a different record is successful.

Syntax:

property Found: Boolean;

Description:

Check the status of Found to determine if a call to FindFirst, FindLast, FindNext or, FindPrior
succeeds. If Found is True, success is indicated. If False, the move to a different record failed.

5.1.26. KeySize

Specifies the size of the key for the current index of the dataset.

TMySQLDataset 82

© 1999-2021, Microolap Technologies

Syntax:

property KeySize: Word;

Description:

Check KeySize to determine the size, in bytes, of the key for the current index. KeySize varies
depending on the number and type of fields that make up the current index.

5.1.27. LastInsertID

Get last inserted value of AUTO_INCREMENT column from MySQL server.

Syntax:

property LastInsertID : Int64;

Description:

This property uses TMySQLDatabase.LastInsertID to get value. DAC for MySQL performs 'SELECT
LAST_INSERT_ID' query for current database and returns its result as value of this property.

See also: TMySQLDatabase.LastInsertID property

5.1.28. Modified

Indicates whether the active record is modified.

Syntax:

property Modified: Boolean;

Description:

Check Modified to determine if the active record is modified. If Modified is True, the active record is
modified. If False, the active record is not modified.

 In general, an application need not check the status of Modified. Properties, events, and
methods of TDataSet and its descendants that modify records generally check this status
automatically and take appropriate actions based on its value.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference83

© 1999-2021, Microolap Technologies

5.1.29. MultiResultsetNo

 Since v2.5.3

Specifies the resultset to associate with component when it become active. This property is useful
when query or stored procedure returns more than one dataset.

Syntax:

property MultiResultsetNo : integer

Description:

Set MultiResultsetNo to number of resultset you want to get from query or stored procedure that
returns more that one result set. EmySQLException is raised if this value is less then number of
resultsets returned by server. You can use AvailableResultsetCount property to inspect how many
resultsets are returned by query or stored procedure.

Numbers of resultsets are counted from zero. So first resultset has number 0, second has number
1, ..., latest has number AvailableResultsetCount - 1

See also: AvailableResultsetCount property

5.1.30. Name

Designates the name of the dataset as referenced by other components.

Syntax:

property Name: TComponentName;

Description:

Use Name to change the name of a dataset to reflect its purpose in the current application. By
default, the IDE assigns sequential names based on the type of the component, such as
'TMySQLTable1', 'TMySQLTable2', and so on.

When the name of the dataset is changed at design time, if any of the field components use the
dataset name as a prefix to the field name, these field names are updated as well.

TMySQLDataset 84

© 1999-2021, Microolap Technologies

5.1.31. ObjectView

Specifies whether fields are to be stored hierarchically or flattened out in the Fields property.

Syntax:

property ObjectView: Boolean;

Description:

ObjectView affects the way the Fields property stores object fields and the way data-aware grids
display ADT and array fields.

When ObjectView is True, the fields are stored hierarchically in the Fields property, meaning any
child fields of an object field are referenced by the object field and don't appear sequentially after the
object field in the TFields.Fields array. When ObjectView is False, the fields are stored sequentially in
the Fields property, meaning any child fields of an object field are stored after the object field as
siblings in the Fields array.

When ObjectView is False, object field types, such as TADTField, are not created. This switch is
provided for increased compatibility with older data-aware controls, which may not be able to handle
object field types properly. The default is False for TMySQLDataSet.

5.1.32. RecNo

Indicates the current record in the dataset.

Syntax:

property RecNo: Longint;

Description:

Examine RecNo to determine the record number of the current record in the dataset. Applications
might use this property with RecordCount to iterate through all the records in a dataset, though
typically record iteration is handled with calls to First, Last, MoveBy, Next, and Prior.

 If accessing tables, RecNo can be set to a specific record number to position the cursor on
that record, beginning from 0.

5.1.33. RecordCount

Indicates the total number of records associated with the dataset.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference85

© 1999-2021, Microolap Technologies

Syntax:

property RecordCount: Longint;

Description:

Examine RecordCount to determine the total number of records in the dataset. Applications might
use this property with RecNo to iterate through all the records in a dataset, though typically record
iteration is handled with calls to First, Last, MoveBy, and Prior.

See also: Example: Min, Max, Position, RecordCount, First, Next

5.1.34. RecordSize

Indicates the size of a record in the dataset.

Syntax:

property RecordSize: Word;

Description:

Examine RecordSize to determine the physical size, in bytes, of the buffer Delphi allocates to hold a
record in the dataset. When a dataset is opened, the Open procedure requests record-buffer size
information and stores the returned information in RecordSize. Delphi uses this information
internally. Applications seldom, if ever, require this information.

5.1.35. RefreshDelete

Specifies whether a dataset should delete a record locally when a database record is not found at
refreshing.

Syntax:

property RefreshDelete : Boolean default True;

Description:

Use the RefreshDelete property to allow a dataset to delete a record from a local storage, when a
corresponding database record is not found at RefreshRecord call. The default value is True. The

TMySQLDataset 86

© 1999-2021, Microolap Technologies

most probable reason why the record is not found - it is deleted. There may be other reasons as well.
To delete the record, set this property to True. To leave the record and raise an exception, set this
property to False. For additional details, see the description of the RefreshRecord method.

5.1.36. SortFieldNames

Specifies field names and sorting order to sort opened dataset by these fields on the client side
without refetching data from server.

Syntax:

property SortFieldNames : string;

Description:

Set SortFieldNames to establish or change the list of fields on which the dataset is sorted. Set sort to
the name of a single field or to a comma-separated list of fields. Every field name can be followed by
the keyword 'ASC' or 'DESC' to specify a sort direction for the field. If one of these keywords is not
used, the default sort direction for the field is ascending ('ASC').

For example:

mySQLQuery1.SortFieldNames := 'ID, Name DESC, ColorValue ASC';

Since v2.6.3 double-quote character (") can be used to quote field name if one contain spaces,
commas or other non-alphanumeric character.

For example:

mySQLQuery1.SQL.Clear;
mySQLQuery1.SQL.Add('SELECT LEFT(TABLE_NAME, 20), TABLE_COLLATION FROM
INFORMATION_SCHEMA.TABLES');
mySQLQuery1.Open;
mySQLQuery1.SortFieldNames := 'TABLE_COLLATION, "LEFT(TABLE_NAME, 20)" DESC';

If dataset is opened setting this property to some string causes sorting of dataset immediately. If
dataset is closed (Active = False) it will be sorted by this fields after opening. This property can also
be used at Design-time.

 Since v2.7.6 you can adjust case sensitivity of sorting using
TMySQLDatabase.DatasetOptions property.

Example:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference87

© 1999-2021, Microolap Technologies

This code can be used to sort data in TDBGrid component by particular column when user clicks on its
title.

procedure TForm1.DBGrid1TitleClick(Column: TColumn);
begin
 //if column already sorted lets sort it in reverse order
 if mySQLTable1.SortFieldNames = Column.FieldName then
 mySQLTable1.SortFieldNames := Column.FieldName + ' DESC'
 else
 mySQLTable1.SortFieldNames := Column.FieldName;
end;

See also: SortBy method, TMySQLDatabase.DatasetOptions property

5.1.37. SparseArrays

Determines whether a unique TField object is created for each element of an array field.

Syntax:

property SparseArrays: Boolean;

Description:

When opening a table or client data set with an array field, SparseArrays determines whether a
unique field component is created for each element of the array field.

The default is False, where a TField descendant is created for each element of the array field. If you
plan to bind data-aware controls to elements of the array field, SparseArrays must be set to False.

Setting SparseArrays to True conserves memory, but does not allow applications to gain a reference
to an element of the array field.

5.1.38. State

Indicates the current operating mode of the dataset.

Syntax:

property State: TDataSetState;

Description:

TMySQLDataset 88

© 1999-2021, Microolap Technologies

Examine State to determine the current operating mode of the dataset. State determines what can be
done with data in a dataset, such as editing existing records or inserting new ones. The dataset state
constantly changes as an application processes data.

Opening a dataset changes State from dsInactive to dsBrowse. An application can call Edit to put a
dataset into dsEdit state, or call Insert to put a dataset into dsInsert state. If a dataset is a
TMySQLTable object, an application can call SetKey or SetRange to put the dataset into dsSetKey
state.

Posting or canceling edits, insertions, or deletions, changes State from its current state to dsBrowse.
Closing a dataset changes its state to dsInactive.

Some states, such as dsCalcFields, dsFilter, dsNewValue, dsOldValue, and dsCurValue cannot be
seen or set directly by an application. These states are automatically set when OnCalcField and
OnFilterRecord events occur, or when an application accesses certain field properties.

See also: Example: State,Seek,Truncate

5.1.39. StatementID

Return the statement ID of the prepared query.

Syntax:

property StatementID : integer;

Description:

Use StatementID property to determinate the statement id of previously prepared query.

See also: Prepare, UnPrepare property

5.1.40. UpdateMode

Determines how MySQL finds records when updating to an SQL database.

Syntax:

property UpdateMode: TUpdateMode;

Description:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference89

© 1999-2021, Microolap Technologies

Use UpdateMode to specify the criteria to use when locating a record in the dataset. UpdateMode
specifies whether modified records are located based on all columns (fields), on only the key fields,
or on the key fields plus the original values of fields that have been modified.

5.1.41. UpdateObject

Specifies the update object component used to update a read-only result set.

Syntax:

property UpdateObject: TDataSetUpdateObject;

Description:

Use UpdateObject to specify the TMySQLUpdateSQL component to use in an application that must
be able to update a read-only result set.

MySQL always attempts to provide an updatable, or "live" query result unless an application
specifically requests a read-only view of data. In some cases, such as a query made against multiple
tables, a live result set cannot be returned. In these cases, UpdateObject property can be used to
specify a TMySQLUpdateSQL component that performs updates as a separate transaction that is
transparent to the application.

See also: TMySQLUpdateSQL component

5.2. Methods

Please see TMySQLDataset methods short descriptions below:

Derived from TDataSet

ActiveBuffer
Returns a pointer to the buffer for the active record.

Append
Adds a new, empty record to the end of the dataset.

AppendRecord
Adds a new, populated record to the end of the dataset and posts it to the database.

CheckBrowseMode
Automatically posts or cancels data changes when an application changes which record in the
dataset is the active record.

TMySQLDataset 90

© 1999-2021, Microolap Technologies

ClearFields
Clears the contents of all fields for the active record.

Close
Closes a dataset.

ControlsDisabled
Indicates whether data-aware controls do not update their display to reflect changes to the
dataset.

CursorPosChanged
Marks the internal cursor position as invalid.

Delete
Deletes the active record and positions the cursor on the next record.

DisableControls
Disables data display in data-aware controls associated with the dataset.

Edit
Enables editing of data in the dataset.

EnableControls
Re-enables data display in data-aware controls associated with the dataset.

FieldByName
Finds a field based on its name.

FindField
Searches for a specified field in the dataset.

FindFirst
Implements a virtual method for positioning the cursor on the first record in a filtered dataset.

FindLast
Implements a virtual method for positioning the cursor on the last record in a filtered dataset.

FindNext
Implements a virtual method for positioning the cursor on the next record in a filtered dataset.

FindPrior
Implements a virtual method for positioning the cursor on the previous record in a filtered
dataset.

First
Positions the cursor on the first record in the dataset.

FreeBookmark
Frees the resources allocated for a specified bookmark.

GetBookmark
Allocates a bookmark for the current cursor position in the dataset.

GetDetailDataSets

Microolap DAC for MySQL, v.3.3.2, Programmer's reference91

© 1999-2021, Microolap Technologies

Fills a list with a dataset for every detail dataset that is not the value of a nested dataset field.

GetFieldList
Retrieves a specified set of field objects into a list.

GetFieldNames
Retrieves a list of names for all fields in a dataset.

GotoBookmark
Implements a virtual method to position the cursor on the record pointed to by a specified
bookmark.

Insert
Inserts a new, empty record in the dataset.

InsertRecord
Inserts a new, populated record to the dataset and posts it to the database.

IsEmpty
Indicates whether the dataset contains no records.

IsLinkedTo
Indicates whether a dataset is linked to a specified data source.

Last
Positions the cursor on the last record in the dataset.

MoveBy
Positions the cursor on a record relative to the active record in the dataset.

Next
Positions the cursor on the next record in the dataset.

Open
Opens the dataset.

Prior

Positions the cursor on the previous record in the dataset.

Refresh
Refetches data from the database to update a dataset's view of data.

Resync
Refetches the active record and the records that precede and follow it.

SetFields
Sets the values for all fields in a record.

UpdateCursorPos
Positions the cursor on the active record.

UpdateRecord
Ensures that data-aware controls and detail datasets reflect record updates.

TMySQLDataset 92

© 1999-2021, Microolap Technologies

In TMySQLDataSet

ApplyUpdates
Writes a dataset's pending cached updates to the database.

BookmarkValid
Tests the validity of a specified bookmark.

Cancel
Cancels modifications to the current record if those changes are not yet posted.

CancelUpdates
Clears all pending cached updates from the cache and restores the dataset its prior state.

CheckOpen
Checks the result of a call to the MySQL.

CloseDatabase
Closes a database connection associated with the database.

CommitUpdates
Clears the cached updates buffer.

CompareBookmarks
Indicates the relationship between two bookmarks.

FetchAll
Retrieves all records from the current cursor position to the end of the file and stores them
locally.

FlushBuffers
Posts all changes that have been written to the record buffer.

GetBlobFieldData
Reads BLOB data into a buffer.

GetCurrentRecord
Retrieves the current record into a buffer.

GetFieldData
Retrieves the current value of a field into a buffer.

GetFieldType
Retrieves a internal field types defined in the DAC for MySQL modules.

GetIndexInfo
Retrieves information about the current index into the index data fields of the dataset.

GetLastInsertID
Returns the ID generated for an AUTO_INCREMENT column by the previous query.

Locate

Microolap DAC for MySQL, v.3.3.2, Programmer's reference93

© 1999-2021, Microolap Technologies

Searches the dataset for a specified record and makes that record the current record.

Lookup
Retrieves field values from a record that matches specified search values.

OpenDatabase
Opens the database that contains the dataset.

Post
Writes a modified record to the database.

Post
Writes a modified record to the database.

Prepare
Sends a query for optimization prior to execution.

UnPrepare
Frees the resources allocated for a previously prepared query.

RefreshRecord
Rereads the field values of the current record from a data source.

RevertRecord
Restores the current record in the dataset to an unmodified state when cached updates are
enabled.

SortBy
Sorts opened dataset on client side without refetching data from server.

Translate
Converts a data string between the ANSI character set used by Delphi (and Windows), and the
local code page (OEM character set).

UpdateStatus
Reports the update status for the current record.

5.2.1. ActiveBuffer

Returns a pointer to the buffer for the active record.

Syntax:

function ActiveBuffer: PChar;

Description:

ActiveBuffer is used internally by many dataset methods to ensure that the active buffer points to
the buffer for the active record. If an application uses existing dataset methods, the active buffer is
always set correctly, so there is usually no need to call ActiveBuffer directly.

TMySQLDataset 94

© 1999-2021, Microolap Technologies

ActiveBuffer is also used by bookmarking methods to index into the active record buffer to retrieve
bookmark information.

Applications that provide custom dataset routines may need to call ActiveBuffer to access the buffer
data.

5.2.2. Append

Adds a new, empty record to the end of the dataset.

Syntax:

procedure Append;

Description:

Call Append to:

§ Open a new, empty record at the end of the dataset.

§ Set the active record to the new record.

After a call to Append, an application can enable users to enter data in the fields of the record, and
can then post those changes to the database using Post (or ApplyUpdates if cached updating is
enabled).

See also: Example: Append, FieldValues, Post

5.2.3. AppendRecord

Adds a new, populated record to the end of the dataset and posts it to the database.

Syntax:

procedure AppendRecord(const Values: array of const);

Description:

Call AppendRecord to create a new, empty record at the end of the dataset, populate it with the field
values in Values, and post the values to the database.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference95

© 1999-2021, Microolap Technologies

For MySQL indexed tables, the index is updated with the new record information. The newly appended
record becomes the active record.

Example:

This statement appends a record to the Customer table. Note that Nulls are entered for some of the
values, but are not required for missing values at the end of the array argument, i.e. after the
Discount field.

Customer.AppendRecord([CustNoEdit.Text,
 CoNameEdit.Text,
 AddrEdit.Text,
 Null,
 Null,
 Null,
 Null,
 Null,
 Null,
 DiscountEdit.Text]);

5.2.4. ApplyUpdates

Writes a dataset's pending cached updates to the database.

Syntax:

procedure ApplyUpdates;

Description:

Call ApplyUpdates to write a dataset's pending cached updates to a database. This method passes
cached data to the database for storage, but the changes are not committed to the database. An
application must explicitly call the database component's Commit method to commit the changes to
the database if the write is successful, or call the database's Rollback method to undo the changes if
there is an error.

Following a successful write to the database, and following a successful call to the database's
Commit method, an application should call the CommitUpdates method to clear the cached update
buffer.

 The preferred method for updating datasets is to call a database component's
ApplyUpdates method rather than to call each individual dataset's ApplyUpdates method.
The database component's ApplyUpdates method takes care of committing and rolling back
transactions and clearing the cache when the operation is successful.

TMySQLDataset 96

© 1999-2021, Microolap Technologies

5.2.5. BookmarkValid

Tests the validity of a specified bookmark.

Syntax:

function BookmarkValid(Bookmark: TBookmark): Boolean; override;

Description:

Call BookmarkValid to determine if a specified bookmark is currently assigned a value. Bookmark
specifies the bookmark to test.

BookmarkValid returns True if a bookmark is valid. Otherwise, it returns False.

5.2.6. Cancel

Cancels modifications to the current record if those changes are not yet posted.

Syntax:

procedure Cancel;

Description:

Call Cancel to undo modifications made to one or more fields belonging to the current record. As long
as those changes are not already posted to the database, Cancel returns the record to its previous
state, and sets the dataset state to dsBrowse.

Typically Cancel is used to back out of changes in response to user request, or in field validation
routines that back out illegal field values. The TDBNavigator object contains a Cancel button that
triggers a call to Cancel.

Example:

The following fragment prompts the user to confirm changes to a record; if the user clicks Yes, the
record is posted to the table, otherwise the changes are canceled.

if MessageDlg('Update Record?',
 mtConfirmation,
 [mbYes, mbNo], 0) = mrYes then
 MySQLTable1.Post
else
 MySQLTable1.Cancel;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference97

© 1999-2021, Microolap Technologies

5.2.7. CancelUpdates

Clears all pending cached updates from the cache and restores the dataset its prior state.

Syntax:

procedure CancelUpdates;

Description:

Call CancelUpdates to clear all pending cached updates from the cache and restore the dataset to
the state it was in when the table was opened, cached updates were last enabled, or updates were
last successfully applied to the database.

When a dataset is closed, or the CachedUpdates property is set to False, CancelUpdates is called
automatically.

 To undo changes to a single record, call RevertRecord.

5.2.8. CheckBrowseMode

Automatically posts or cancels data changes when an application changes which record in the
dataset is the active record.

Syntax:

procedure CheckBrowseMode;

Description:

CheckBrowseMode is used internally by many dataset methods to ensure that modifications to the
active record are posted to the database when a dataset's state is dsEdit, dsInsert, or dsSetKey state
and a method switches to a different record.

§ If State is dsEdit or dsInsert, CheckBrowseMode calls UpdateRecord, and then, if the
Modified property for the dataset is True, calls Post. If Modified is False, CheckBrowseMode
calls Cancel.

§ If State is dsSetKey, CheckBrowseMode calls Post.

§ If State is dsInactive, CheckBrowseMode raises an exception.

§ If an application uses existing dataset methods, CheckBrowseMode is always called when
necessary, so there is usually no need to call CheckBrowseMode directly.

TMySQLDataset 98

© 1999-2021, Microolap Technologies

Applications that provide custom dataset routines may need to call CheckBrowseMode inside those
routines to guarantee that changes are posted to the database when switching to a different record.

5.2.9. CheckOpen

Checks the result of a call to the MySQL.

Syntax:

function CheckOpen(Status: DBIResult): Boolean;

Description:

Call CheckOpen to determine if a call to the MySQL returns an error when an attempt is made to
access a dataset. Status is the return result of a previous call.

CheckOpen returns True if access is successful. If Status indicates insufficient table rights when
accessing a table, CheckOpen calls the GetPassword method to prompt the user for a password. If
the dialog is successful, CheckOpen returns True.

Otherwise CheckOpen returns False, indicating that dataset access failed.

5.2.10. ClearFields

Clears the contents of all fields for the active record.

Syntax:

procedure ClearFields;

Description:

Call ClearFields to erase the current contents of all fields for the active record. If the dataset is not in
either dsInsert or dsEdit state, ClearFields raises an exception.

If a SetKey operation is not under way, ClearFields recalculates all calculated fields, and generates
an OnDataChange event on the data source component associated with the dataset.

5.2.11. Close

Closes a dataset.

Syntax:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference99

© 1999-2021, Microolap Technologies

procedure Close;

Description:

Call Close to set the Active property of a dataset to False. When Active is False, the dataset is
closed; it cannot read data from or write data to the database.

An application must set Active to False before changing other properties that affect the status of the
database or the controls that display data in an application.

For example, to change the DataSource property for a dataset, the dataset must be closed. Closing
the dataset puts it into the dsInactive state and closes the cursor.

5.2.12. CloseDatabase

Closes a database connection associated with the database.

Syntax:

procedure CloseDatabase(Database: TMySQLDataBase);

Description:

Call CloseDatabase to close a persistent database connection. Database specifies the database
component for which to close the connection.

CloseDatabase decrements the specified database component's reference count, and then, if the
reference count is zero and the database component's KeepConnection property is False,
CloseDatabase either frees a temporary database component or closes the connection for a
persistent database component.

 Calling CloseDatabase for a persistent database component does not close the
connection. To close a connection for a persistent database component, call the database
component's Close method directly.

Temporary database components are closed automatically when the last dataset associated with the
database component is closed, but an application can call CloseDatabase prior to that time to force
closure. Closing a connection established by a temporary database component does not free the
component if the KeepConnection property is True (the default). To free temporary database
components after closing their connections call DropConnections method.

5.2.13. CommitUpdates

Clears the cached updates buffer.

TMySQLDataset 100

© 1999-2021, Microolap Technologies

Syntax:

procedure CommitUpdates;

Description:

Call CommitUpdates to clear the cached updates buffer after both a successful call to ApplyUpdates
and a database component's Commit method. Clearing the cache after applying updates ensures that
the cache is empty except for records that could not be processed and were skipped by the
OnUpdateRecord or OnUpdateError event handlers. An application can attempt to modify the
records still in the cache.

Record modifications made after a call to CommitUpdates repopulate the cached update buffer and
require a subsequent call to ApplyUpdates to move them to the database.

 Applications that use a database component's ApplyUpdates method to apply and commit
pending updates for all datasets associated with the database component do not need to
call CommitUpdates.

5.2.14. CompareBookmarks

Indicates the relationship between two bookmarks.

Syntax:

function CompareBookmarks(Bookmark1,
 Bookmark2: TBookmark): Integer;

Description:

Call CompareBookmarks to determine if two bookmarks are identical. Bookmark1 and Bookmark2
are the bookmarks to compare. CompareBookmarks returns -1 if Bookmark1 is less than Bookmark2,
1 if Bookmark1 is greater than Bookmark2, and 0 if the bookmarks are identical or nil.

5.2.15. ControlsDisabled

Indicates whether data-aware controls do not update their display to reflect changes to the dataset.

Syntax:

function ControlsDisabled: Boolean;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference101

© 1999-2021, Microolap Technologies

Description:

Call ControlsDisabled to determine if the updating of data display in data-aware controls is currently
disabled. If ControlsDisabled is True, controls are currently disabled. ControlsDisabled is True as
long as the reference count that keeps track of disabling for the dataset is greater than zero. This
count is incremented every time the DisableControls procedure is called and decremented when
EnableControls is called. Applications should call DisableControls to improve performance and
prevent constant updates during automated iterations through records in the dataset.

In complex applications, when controls may be disabled multiple times by different processes, you
can use ControlsDisabled as a check in a procedure to re-enable controls should each call to
DisableControls not be paired with a subsequent call to EnableControls.

Example:

procedure ReEnableControls (DataSet: TDataSet);
begin
while DataSet.ControlsDisabled do
 DataSet.EnableControls;
end;

5.2.16. CursorPosChanged

Marks the internal cursor position as invalid.

Syntax:

procedure CursorPosChanged;

Description:

CursorPosChanged is an internal method that invalidates the variable that tracks the physical cursor
position relative to the logical cursor position. CursorPosChanged is called by the Locate and
Lookup methods prior to searching for a requested record. These methods, if successful, reposition
the cursor at the first matching record found.

5.2.17. Delete

Deletes the active record and positions the cursor on the next record.

Syntax:

procedure Delete;

TMySQLDataset 102

© 1999-2021, Microolap Technologies

Description:

Call Delete to remove the active record from the database. If the dataset is inactive, Delete raises an
exception.

Otherwise Delete:

§ Verifies that the dataset is not empty (and raises an exception if it is).

§ Calls CheckBrowseMode to post any pending changes to a prior record if necessary.

§ Calls the BeforeDelete event handler.

§ Deletes the record.

§ Frees the buffers allocated for the record.

§ Puts the dataset into dsBrowse mode.

§ Resynchronizes the dataset to position the cursor on the next undeleted record.

§ Calls the AfterDelete event handler.

5.2.18. DisableControls

Disables data display in data-aware controls associated with the dataset.

Syntax:

procedure DisableControls;

Description:

Call DisableControls prior to iterating through a large number of records in the dataset to prevent
data-aware controls from updating every time the active record changes. Disabling controls prevents
flicker and speeds performance because data does not need to be written to the display.

If controls are not already disabled, DisableControls records the current state of the dataset,
broadcasts the state change to all associated data-aware controls and detail datasets, and
increments the dataset's disabled count variable. Otherwise, DisableControls just increments the
disabled count variable.

The disabled count is used internally by other methods and objects to determine whether to display
data in data-aware controls. When the disable count variable is greater than zero, data is not
displayed.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference103

© 1999-2021, Microolap Technologies

If the dataset is the master of a master/detail relationship, calling DisableControls also disables the
master/detail relationship. Setting BlockReadSize instead of calling DisableControls updates the
detail datasets as you scroll through the dataset, but does not update data-aware controls.

 DisableControls can safely be called when controls are already disabled. In complex
applications there may be separate operations that are sometimes nested, both of which
need to disable controls.

See also: Example: DisableControls, EnableControls, Eof

5.2.19. Edit

Enables editing of data in the dataset.

Syntax:

procedure Edit;

Description:

Call Edit to permit editing of the active record in a dataset. Edit determines the current state of the
dataset. If the dataset is empty, Edit calls Insert.

Otherwise Edit:

§ Calls CheckBrowseMode to post any pending changes to a prior record if necessary.

§ Calls the BeforeEdit event handler.

§ Retrieves the record.

§ Puts the dataset into dsEdit state, enabling the application or user to modify fields in the
record.

§ Broadcasts the state change to associated controls.

§ Calls the AfterEdit event handler.

See also: Example: Create, CreateBlobStream, Edit, CopyFrom

5.2.20. EnableControls

Re-enables data display in data-aware controls associated with the dataset.

TMySQLDataset 104

© 1999-2021, Microolap Technologies

Syntax:

procedure EnableControls;

Description:

Call EnableControls to permit data display in data-aware controls after a prior call to
DisableControls.

EnableControls decrements the disabled count variable for the dataset if it is not already zero. If the
disable count variable is zero, EnableControls updates the current state of the dataset, if necessary,
and then tells associated controls to re-enable display.

See also: Example: DisableControls, EnableControls, Eof

5.2.21. FetchAll

Retrieves all records from the current cursor position to the end of the file and stores them locally.

Syntax:

procedure FetchAll;

Description:

Call FetchAll to reduce network traffic when using cached updates. FetchAll calls
CheckBrowseMode to post any pending changes, and then retrieves all records from the current
cursor position to the end of the file, and store them locally.

Ordinarily when cached updates are enabled, a transaction retrieves only as much data as it needs
for display purposes. Each new fetch starts a new, read-only transaction. To consolidate transactions
and reduce network traffic, an application can call FetchAll to retrieve all data in a single transaction.

 Using FetchAll is not always appropriate. For example, when an application accesses a
database used by many simultaneous clients and there is a high degree of contention for
updating the same records, fetching all records at once may not be advantageous because
some fetched records may be changed by other applications. Always weigh the advantages
of reduced network traffic against the need for reduced record contention.

5.2.22. FieldByName

Finds a field based on its name.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference105

© 1999-2021, Microolap Technologies

Syntax:

function FieldByName(const FieldName: String): TField;

Description:

Call FieldByName to retrieve field information for a field when only its name is known. FieldName is
the name of an existing field. FieldByName returns the TField component for the specified field. If
the specified field does not exist, FieldByName raises an EDatabaseError exception.

FieldName can be the name of a simple field, the name of a subfield of an object field that has been
qualified by the parent field name, or the name of an aggregated field. Because of this flexibility, it is
often preferable to use FieldByName rather than the Fields property or the AggFields property.

An application can directly access specific properties and methods of the field returned by
FieldByName. For example, the following statement determines if a specified field is a calculated
field or not:

if Customers.FieldByName('FullName').Calculated then
 MessageDlg(Format('%s is a calculated field. ',
 ['FullName']),
 mtInformation,
 [mbOK],
 0);

FieldByName is especially useful at design time for developers who are creating database
applications, but who do not have access to the underlying table and therefore cannot use persistent
field components.

 To retrieve or set the value for a specific field, call the default dataset method FieldValues
instead of FieldByName.

See also: Example: EditRangeStart,EditRangeEnd,FieldByName,ApplyRange

5.2.23. FindField

Searches for a specified field in the dataset.

Syntax:

function FindField(const FieldName: String): TField;

Description:

TMySQLDataset 106

© 1999-2021, Microolap Technologies

Call FindField to determine if a specified field component exists in a dataset. FieldName is the name
of the field for which to search. If FindField finds a field with a matching name, it returns the TField
component for the specified field. Otherwise it returns nil.

FindField is the same as the FieldByName method, except that it returns nil rather than raising an
exception when the field is not found.

See also: Example: FindField,AsString

5.2.24. FindFirst

Implements a virtual method for positioning the cursor on the first record in a filtered dataset.

Syntax:

function FindFirst: Boolean;

Description:

This function returns False, indicating that the cursor was not successfully repositioned. Descendant
classes override FindFirst to position the cursor on the first record of the dataset, honoring any filters
that are in effect. FindFirst should return True if the cursor is successfully repositioned.

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

5.2.25. FindLast

Implements a virtual method for positioning the cursor on the last record in a filtered dataset.

Syntax:

function FindLast: Boolean;

Description:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference107

© 1999-2021, Microolap Technologies

This function returns False, indicating that the cursor was not successfully repositioned. Descendant
classes override FindLast to position the cursor on the last record of the dataset, honoring any filters
that are in effect. FindLast should return True if the cursor is successfully repositioned.

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

5.2.26. FindNext

Implements a virtual method for positioning the cursor on the next record in a filtered dataset.

Syntax:

function FindNext: Boolean;

Description:

This function returns False, indicating that the cursor was not successfully repositioned. Descendant
classes override FindNext to position the cursor on the next record of the dataset, honoring any
filters that are in effect. FindNext should return True if the cursor is successfully repositioned.

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

5.2.27. FindPrior

Implements a virtual method for positioning the cursor on the previous record in a filtered dataset.

Syntax:

function FindPrior: Boolean;

Description:

TMySQLDataset 108

© 1999-2021, Microolap Technologies

This function returns False, indicating that the cursor was not successfully repositioned. Descendant
classes override FindPrior to position the cursor on the previous record of the dataset, honoring any
filters that are in effect. FindPrior should return True if the cursor is successfully repositioned.

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

See also: Example: GetBookmark, GotoBookmark, FreeBookmark, FindPrior, Value,
OnDataChange, BOF

5.2.28. First

Positions the cursor on the first record in the dataset.

Syntax:

procedure First;

Description:

Call First to position the cursor on the first record in the dataset and make it the active record. First
posts any changes to the active record and:

§ Clears the record buffers.

§ Sets the cursor to the beginning of the dataset.

§ Fetches the first record, positions the cursor on it, and makes it the active record.

§ Fetches any additional records required for display, such as those needed to fill out a grid
control.

§ Sets the Bof property to True.

§ Broadcasts the record change so that data controls and linked detail sets can update.

 TDataSet uses internal, protected methods to position the database cursor and to fetch
additional records required for display. In TDataSet, these internal methods are abstract.
Descendant classes implement these methods to enable the First method to work.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference109

© 1999-2021, Microolap Technologies

See also: Example: Min, Max, Position, RecordCount, First, Next

5.2.29. FlushBuffers

Posts all changes that have been written to the record buffer.

Syntax:

procedure FlushBuffers;

Description:

Call FlushBuffers to cause the dataset to post all pending changes to the database, including any
cached updates. Use FlushBuffers instead of CheckBrowseMode if it is important that cached record
buffers are posted.

5.2.30. FreeBookmark

Frees the resources allocated for a specified bookmark.

Syntax:

procedure FreeBookmark(Bookmark: TBookmark); virtual;

Description:

Call FreeBookmark to free an existing bookmark before reassigning it. FreeBookmark releases the
memory allocated for a specified bookmark when the bookmark is no longer needed.

See also: Example: GetBookmark, GotoBookmark, FreeBookmark, FindPrior, Value,
OnDataChange, BOF

5.2.31. GetBlobFieldData

Reads BLOB data into a buffer.

Syntax:

TBlobByteData = array of Byte;
function GetBlobFieldData(FieldNo: Integer;

TMySQLDataset 110

© 1999-2021, Microolap Technologies

 var Buffer: TBlobByteData): Integer;
override;

Description:

GetBlobFieldData reads blob data from the field specified by FieldNo into a Buffer. The buffer is a
dynamic array of bytes, so that it can grow to accommodate the size of the BLOB data.
GetBlobFieldData returns the size of the buffer.

5.2.32. GetBookmark

Allocates a bookmark for the current cursor position in the dataset.

Syntax:

function GetBookmark: TBookmark; virtual;

Description:

Call GetBookmark to establish a bookmark for the active record in the dataset. Establishing a
bookmark for a record enables an application to return to that record in the dataset at any time while
the bookmark exists.

GetBookmark requires that a variable of type TBookmark already be declared in the application. Use
GetBookmark to assign the variable a value that can be referenced by subsequent calls to
GotoBookmark and FreeBookmark.

 Applications that create bookmarks with GetBookmark should subsequently release the
system resource allocated to them by calling FreeBookmark when the bookmarks are no
longer needed.

See also: Example: GetBookmark, GotoBookmark, FreeBookmark, FindPrior, Value,
OnDataChange, BOF

5.2.33. GetCurrentRecord

Retrieves the current record into a buffer.

Syntax:

function GetCurrentRecord(Buffer: PChar): Boolean;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference111

© 1999-2021, Microolap Technologies

Description:

Most applications should not need to call GetCurrentRecord. TDataSet automatically allocates a
buffer for the active record.

Call GetCurrentRecord to copy the current record into a buffer allocated by the application. Buffer
must be at least as big as the record size indicated by the RecordSize property.

5.2.34. GetDetailDataSets

Fills a list with a dataset for every detail dataset that is not the value of a nested dataset field.

Syntax:

procedure GetDetailDataSets(List: TList);

Description:

Datasets can represent master/detail relationships in two ways: as linked cursors or as nested
dataset fields. GetDetailDataSets lists all detail datasets of the active record into List if they are not
the value of a nested dataset field. To obtain a list of the detail datasets that are the values of nested
dataset fields, use the NestedDataSets property instead.

5.2.35. GetFieldData

Retrieves the current value of a field into a buffer.

Syntax:

function GetFieldData(FieldNo: Integer; Buffer: Pointer): Boolean; overload;
override;
function GetFieldData(Field: TField; Buffer: Pointer): Boolean; overload;
override;
function GetFieldData(Field: TField; Buffer: Pointer; NativeFormat: Boolean):
Boolean; overload; virtual;

Description:

Most applications do not need to call GetFieldData. TField objects call this method to implement
their GetData method.

The Field or FieldNo parameter indicates the field whose data should be fetched. Field specifies the
component itself, while FieldNo indicates its field number. The Buffer parameter is a memory buffer

TMySQLDataset 112

© 1999-2021, Microolap Technologies

with sufficient space to accept the value of the field as it exists in the database (unformatted and
untranslated).

NativeFormat indicates whether the dataset fetches the field in Delphi's native format for the field
type. When NativeFormat is False, the dataset must convert the field value to the native type. This
allows the field to handle data from different types of datasets in a uniform manner.

GetFieldData returns a value that indicates whether the data was successfully fetched.

GetFieldData returns True if the buffer is successfully filled with the field data, and False if the data
could not be fetched.

5.2.36. GetFieldList

Retrieves a specified set of field objects into a list.

Syntax:

procedure GetFieldList(List: TList; Const FieldNames: String);

Description:

Call GetFieldList to copy a specified set of field objects into a list object created and maintained by
the application.

List is the TList object into which to copy the field objects. FieldNames is a string containing the
name of the fields to copy. Each field name in the string must be separated from other field names
with a semicolon. GetFieldList builds a list that contains only the field objects for which it finds a
matching name in the dataset's list of field objects.

 Applications do not normally call GetFieldList to copy field objects. Field objects are
directly accessible through the dataset itself. In some cases, however, it can be useful to
work with a copy of a field object or its data instead of working on the actual object in the
dataset.

5.2.37. GetFieldNames

Retrieves a list of names for all fields in a dataset.

Syntax:

procedure GetFieldNames(List: TStrings);

Microolap DAC for MySQL, v.3.3.2, Programmer's reference113

© 1999-2021, Microolap Technologies

Description:

Call GetFieldNames to get a list of names for all fields in a dataset. List is a TStrings object created
and maintained by the application.

For example, to load a list box with the field names of a table:

MySQLTable1.GetFieldNames(ListBox1.Items);

Retrieving a list of field names is especially useful for applications that work with datasets whose
field objects are created dynamically at runtime. By retrieving a list of field names, the application
can be restricted to working only with fields that exist at runtime.

5.2.38. GetFieldType

Retrieves a internal field types defined in the DAC for MySQL modules.

Syntax:

function GetFieldType(const FieldNum: integer): integer;

Description:

The FieldNum parameter indicates the field whose type identifier should be fetched. FieldNum
indicates its field number.

5.2.39. GetIndexInfo

Retrieves information about the current index into the index data fields of the dataset.

Syntax:

procedure GetIndexInfo;

Description:

Call GetIndexInfo to update information about the current index. Ordinarily an application does not
need to call GetIndexInfo because this routine is used internally to retrieve index information as
needed. Some applications, however, may want to ensure that the index information used by the
dataset is up-to-date.

GetIndexInfo queries for index information, including:

TMySQLDataset 114

© 1999-2021, Microolap Technologies

§ Whether or not the index is case insensitive.

§ The number of fields that make up the key for the index.

§ The field map for the index.

§ The size of the index key.

5.2.40. GetLastInsertID

Returns the ID generated for an AUTO_INCREMENT column by the previous query.

Syntax:

procedure GetLastInsertID: Int64;

Description:

Use this function after you have performed an INSERT query into a table that contains an
AUTO_INCREMENT field.

Note that GetLastInsertID returns 0 if the previous query does not generate an AUTO_INCREMENT
value. If you need to save the value for later, be sure to call GetLastInsertID immediately after the
query that generates the value.

Also note that the value of the SQL LAST_INSERT_ID function always contains the most recently
generated AUTO_INCREMENT value, and is not reset between queries because the value of that
function is maintained in the server.

5.2.41. GotoBookmark

Implements a virtual method to position the cursor on the record pointed to by a specified bookmark.

Syntax:

procedure GotoBookmark(Bookmark: TBookmark);

Description:

GotoBookmark calls a virtual, abstract internal method that is not implemented by TDataSet.
Descendants of TDataSet redeclare and implement the internal method so that GotoBookmark
makes the record identified by the Bookmark parameter active.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference115

© 1999-2021, Microolap Technologies

See also: Example: GetBookmark, GotoBookmark, FreeBookmark, FindPrior, Value,
OnDataChange, BOF

5.2.42. Insert

Inserts a new, empty record in the dataset.

Syntax:

procedure Insert;

Description:

Call Insert to:

§ Open a new, empty record in the dataset.

§ Set the active record to the new record.

After a call to Insert, an application can enable users to enter data in the fields of the record, and
then post those changes to the database using Post (or ApplyUpdates if cached updating is
enabled).

For MySQL indexed tables, the index is updated with the new record information.

See also: Example: BeforeInsert, Insert, AsInteger, FieldByName

5.2.43. InsertRecord

Inserts a new, populated record to the dataset and posts it to the database.

Syntax:

procedure InsertRecord(const Values: array of const);

Description:

Call InsertRecord to create a new, empty record at in the dataset, populate it with the field values in
Values, and post the values to the database.

For MySQL indexed tables, the index is updated with the new record information.

TMySQLDataset 116

© 1999-2021, Microolap Technologies

The newly inserted record becomes the active record.

Example:

This statement appends a record to the Customer table. Note that Nulls are entered for some of the
values, but are not required for missing values at the end of the array argument.

Customer.InsertRecord([CustNoEdit.Text,
 CoNameEdit.Text,
 AddrEdit.Text,
 Null,
 Null,
 Null,
 Null,
 Null,
 Null,
 DiscountEdit.Text]);

5.2.44. IsEmpty

Indicates whether the dataset contains no records.

Syntax:

function IsEmpty: Boolean;

Description:

Call IsEmpty to determine if a dataset has records. IsEmpty returns True if the dataset does not
contain any records. Otherwise it returns False.

5.2.45. IsLinkedTo

Indicates whether a dataset is linked to a specified data source.

Syntax:

function IsLinkedTo(DataSource: TDataSource): Boolean;

Description:

Call IsLinkedTo to verify that a dataset is linked to a specific data source. DataSource is the name of
the data source against which to test.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference117

© 1999-2021, Microolap Technologies

 IsLinkedTo is mainly provided for developers deriving custom components based on
TDataSet. It is not intended or needed for general data access.

If the datasource already provides data from the dataset or one of its nested dataset fields (or a
nested dataset nested in a dataset field...), IsLinkedTo returns True. If the datasource provides data
from some other dataset, or if the data source does not already have a dataset of its own, IsLinkedTo
returns False.

5.2.46. Last

Positions the cursor on the last record in the dataset.

Syntax:

procedure Last;

Description:

Call Last to position the cursor on the last record in the dataset and make it the active record. Last
posts any changes to the active record and:

§ Clears the record buffers.

§ Sets the cursor to the end of the dataset.

§ Fetches the last record, positions the cursor on it, and makes it the active record.

§ Fetches any additional records required for display, such as those needed to fill out a grid
control.

§ Sets the Eof property to True.

§ Broadcasts the record change so that data controls and linked detail sets can update.

 TDataSet uses internal, protected methods to position the database cursor and to fetch
additional records required for display. In TDataSet, these internal methods are abstract.
Descendant classes implement these methods to enable the Last method to work.

5.2.47. Locate

Searches the dataset for a specified record and makes that record the current record.

Syntax:

TMySQLDataset 118

© 1999-2021, Microolap Technologies

function Locate(const KeyFields: String;
 const KeyValues: Variant;
 Options: TLocateOptions): Boolean;

Description:

Call Locate to search a dataset for a specific record and position the cursor on it.

KeyFields is a string containing a semicolon-delimited list of field names on which to search.

KeyValues is a variant array containing the values to match in the key fields. If KeyFields lists a
single field, KeyValues specifies the value for that field on the desired record. To specify multiple
search values, pass a variant array as KeyValues, or construct a variant array on the fly using the
VarArrayOf routine.

For example:

with CusTMySQLTable do
 Locate('Company;Contact;Phone',
 VarArrayOf(['Sight Diver',
 'P',
 '408-431-1000']), [loPartialKey]);

Options is a set that optionally specifies additional search latitude when searching on string fields. If
Options contains the loCaseInsensitive setting, then Locate ignores case when matching fields.

If Options contains the loPartialKey setting, then Locate allows partial-string matching on strings in
KeyValues.

If Options is an empty set, or if the KeyFields property does not include any string fields, Options is
ignored.

Locate returns True if it finds a matching record, and makes that record the current one. Otherwise
Locate returns False.

Locate uses the fastest possible method to locate matching records. If the search fields in KeyFields
are indexed and the index is compatible with the specified search options, Locate uses the index.
Otherwise Locate creates a filter for the search.

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference119

© 1999-2021, Microolap Technologies

5.2.48. Lookup

Retrieves field values from a record that matches specified search values.

Syntax:

function Lookup(const KeyFields: String;
 const KeyValues: Variant;
 const ResultFields: String): Variant;

Description:

Call Lookup to retrieve values for specified fields from a record that matches search criteria.

KeyFields
A string containing a semicolon-delimited list of field names on which to search.

KeyValues
A variant array containing the values to match in the key fields. To specify multiple search
values, pass KeyValues as a variant array as an argument, or construct a variant array on the fly
using the VarArrayOf routine.

ResultFields
A string containing a semicolon-delimited list of field names whose values should be returned
from the matching record.

Lookup returns a variant array containing the values from the fields specified in ResultFields.
Otherwise it returns a Variant with the value Null, indicating that a matching record was not found.

Lookup uses the fastest possible method to locate matching records. If the search fields in KeyFields
are indexed, Lookup uses the index. Otherwise Lookup creates a filter for the search.

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

See also: Locate method

5.2.49. MoveBy

Positions the cursor on a record relative to the active record in the dataset.

TMySQLDataset 120

© 1999-2021, Microolap Technologies

Syntax:

function MoveBy(Distance: Integer): Integer;

Description:

Call MoveBy to position the cursor on a record relative to the active record in the dataset. Distance
indicates the number of records to move. A positive value for Distance indicates forward progress
through the dataset, while a negative value indicates backward progress.

For example, the following statement moves backward through the dataset by 10 records:

MoveBy(-10);

MoveBy posts any changes to the active record and:

§ Sets the Bof and Eof properties to False.

§ If Distance is positive, repeatedly fetches subsequent records (if possible), decrementing
Distance until it is zero, positions the cursor on the last record fetched, and makes it the active
record. If an attempt is made to move past the end of the file, MoveBy sets Eof to True.

§ If Distance is negative, repeatedly fetches previous records (if possible), incrementing Distance
until it is zero, positions the cursor on the last record fetched, and makes it the active record. If
an attempt is made to move past the start of the file, MoveBy sets Bof to True.

§ Broadcasts information about the record change so that data-aware controls and linked
datasets can update.

§ Returns the actual number of records moved. In most cases, Result is the absolute value of
Distance, but if MoveBy encounters the beginning-of-file or end-of-file before moving Distance
records, Result will be less than the absolute value of Distance.

See also: Example: MoveBy, SelectedIndex, Tag

5.2.50. Next

Positions the cursor on the next record in the dataset.

Syntax:

procedure Next;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference121

© 1999-2021, Microolap Technologies

Description:

Call Next to position the cursor on the next record in the dataset and make it the active record. Next
posts any changes to the active record and:

§ Sets the Bof and Eof properties to False.

§ Fetches the next record, positions the cursor on it, and makes it the active record.

§ Fetches any additional records required for display, such as those needed to fill out a grid
control.

§ Sets the Eof property to True if the cursor was already on the last record in the dataset.

§ Broadcasts the record change so that data controls and linked detail sets can update.

 TDataSet uses internal, protected methods to position the database cursor and to fetch
additional records required for display. In TDataSet, these internal methods are abstract.
Descendant classes implement these methods to enable the Next method to work.

See also: Example: Min, Max, Position, RecordCount, First, Next

5.2.51. Open

Opens the dataset.

Syntax:

procedure Open;

Description:

Call Open to set the Active property for the dataset to True. When Active is True, data can be read
from and written to the database.

Setting Active to True:

§ Triggers the BeforeOpen event handler if one is defined for the dataset.

§ Sets the dataset state to dsBrowse.

§ Opens cursor into the dataset, if appropriate (only applies to TMySQLDataSet and its
descendants, TMySQLQuery and TMySQLTable).

TMySQLDataset 122

© 1999-2021, Microolap Technologies

§ Triggers the AfterOpen event handler if one is defined for the dataset.

If an error occurs during the dataset open, dataset state is set to dsInactive, and the cursor is closed.

5.2.52. OpenDatabase

Opens the database that contains the dataset.

Syntax:

function OpenDatabase: TMySQLDataBase;

Description:

Call OpenDatabase to connect to the database that contains the dataset. The DatabaseName
property specifies the database to open.

5.2.53. Post

Writes a modified record to the database.

Syntax:

procedure Post; override;

Description:

Call Post to write a modified record to the database. Dataset methods that change the dataset state,
such as Edit, Insert, or Append, or that move from one record to another, such as First, Last, Next,
and Prior automatically call Post.

See also: Example: Append, FieldValues, Post

5.2.54. Prepare

Sends a query for optimization prior to execution.

Syntax:

procedure Prepare;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference123

© 1999-2021, Microolap Technologies

Description:

Call Prepare to allocate resources for the query and to perform additional optimizations. Calling
Prepare before executing a query improves application performance.

Delphi automatically prepares a query if it is executed without first being prepared. After execution,
Delphi unprepares the query. When a query will be executed a number of times, an application should
always explicitly prepare the query to avoid multiple and unnecessary prepares and unprepares.

Preparing a query consumes some database resources, so it is good practice for an application to
unprepare a query once it is done using it. The UnPrepare method unprepares a query.

 When you change the text of a query at runtime, the query is automatically closed and
unprepared.

 Note: Prepared statements support is available since MySQL 4.1. If you are using a lower
version the Prepare call will be skipped.

5.2.55. Prior

Positions the cursor on the previous record in the dataset.

Syntax:

procedure Prior;

Description:

Call Prior to position the cursor on the previous record in the dataset and make it the active record.
Prior posts any changes to the active record and:

§ Sets the Bof and Eof properties to False.

§ Fetches the previous record, positions the cursor on it, and makes it the active record.

§ Fetches any additional records required for display, such as those needed to fill out a grid
control.

§ Sets the Bof property to True if the cursor was already on the first record in the dataset.

§ Broadcasts the record change so that data controls and linked detail sets can update.

TMySQLDataset 124

© 1999-2021, Microolap Technologies

 TDataSet uses internal, protected methods to position the database cursor and to fetch
additional records required for display. In TDataSet, these internal methods are abstract.
Descendant classes implement these methods to enable the Prior method to work.

5.2.56. Refresh

Refetches data from the database to update a dataset's view of data.

Syntax:

procedure Refresh;

Description:

Call Refresh to ensure that an application has the latest data from a database. For example, when an
application turns off filtering for a dataset, it should immediately call Refresh to display all records in
the dataset, not just those that used to meet the filter condition.

See also: Example: SetRange, CancelRange, Refresh

5.2.57. RefreshRecord

Rereads the field values of the current record from a data source.

Syntax:

function RefreshRecord: Boolean;

Description:

Use RefreshRecord to discard all the changes of the current record and reread it from a data source.

To reread the record, DAC for MySQL performs the following sequence of steps:

· If TMySQLDataSet.UpdateObject is assigned and TMySQLUpdateSQL.RefreshRecordSQL is
not empty, then this SQL command is executed.

· Otherwise DAC for MySQL generates a SELECT command that rereads a single row from the
database and executes the command.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference125

© 1999-2021, Microolap Technologies

If the query to a data source returns no rows (for example, when a record is deleted), then when
TMySQLDataSet.Options.RefreshDelete is True, a record is removed from a dataset, otherwise an
exception is raised.

The method returns True if a record is refreshed. Otherwise, it returns False if it is deleted from a
dataset.

5.2.58. Resync

Refetches the active record and the records that precede and follow it.

Syntax:

type TResyncMode = set of (rmExact, rmCenter);
procedure Resync(Mode: TResyncMode); virtual;

Description:

Resync is used internally by other dataset methods to resynchronize the Delphi dataset with
underlying physical data when making calls that may change the cursor position. Applications should
use the Refresh method instead of calling Resync.

Mode indicates optional processing that Resync should handle. If Mode contains rmExact, Resync
raises an exception if Resync is called when the cursor is not positioned on a valid record. If Mode
contains rmCenter, Resync positions the active record in the center of all buffered records.

Regardless of Mode, Resync also activates the buffers for the active record, retrieves prior and
subsequent records for display purposes, and triggers a dataset change event.

5.2.59. RevertRecord

Restores the current record in the dataset to an unmodified state when cached updates are enabled.

Syntax:

procedure RevertRecord;

Description:

Call RevertRecord to undo changes made to the current record when cached updates are enabled.

 To undo all changes to all pending updates in the cache, call CancelUpdates.

TMySQLDataset 126

© 1999-2021, Microolap Technologies

5.2.60. SetFields

Sets the values for all fields in a record.

Syntax:

procedure SetFields(const Values: array of const);

Description:

Call SetFields to set values for some or all fields in the active record at the same time.

Values contains the values to insert into each field. Values are assigned to the record based on the
order of columns in the table or tables underlying the dataset. These values can be literals, variables,
NULL, or nil. If Values contains fewer values than there are fields in the record, all records for which
values are not provided are assigned a NULL value. A NULL value overwrites any existing value in
such fields.

Before calling SetFields, call Edit to put the dataset into dsEdit state. After calling SetFields, call
Post to write the changes to the database.

 To set values for some fields while retaining existing values for others, pass nil for each
field that should not change.

5.2.61. SortBy

Sorts opened dataset on client side without refetching data from server.

Syntax:

procedure SortBy(FieldNames : string);

Description:

Call SortBy to sort dataset by particular fields on client side. Field names are case-sensitive and
separated by commas. Every field name can be followed by the keyword 'ASC' or 'DESC' to specify a
sort direction for the field. If one of these keywords is not used, the default sort direction for the field
is ascending ('ASC').

For example:

mySQLQuery1.SortBy('ID, Name DESC, ColorValue ASC');

Microolap DAC for MySQL, v.3.3.2, Programmer's reference127

© 1999-2021, Microolap Technologies

Since v2.6.3 double-quote character (") can be used to quote field name if one contain spaces,
commas or other non-alphanumeric character.

For example:

mySQLQuery1.SQL.Clear;
mySQLQuery1.SQL.Add('SELECT LEFT(TABLE_NAME, 20), TABLE_COLLATION FROM
INFORMATION_SCHEMA.TABLES');
mySQLQuery1.Open;
mySQLQuery1.SortBy('TABLE_COLLATION, "LEFT(TABLE_NAME, 20)" DESC');

This method affects dataset order only when it is opened, i.e. when Active = True.

 Since v2.7.6 you can adjust case sensitivity of sorting using
TMySQLDatabase.DatasetOptions property

Example:

This code can be used to sort data in TDBGrid component by particular column when user clicks on it
title.

procedure TForm1.DBGrid1TitleClick(Column: TColumn);
begin
 mySQLTable1.SortBy(Column.FieldName + ' ASC');
end;

See also: SortFieldNames, TMySQLDatabase.DatasetOptions properties

5.2.62. Translate

Converts a data string between the ANSI character set used by Delphi (and Windows), and the local
code page (OEM character set).

Syntax:

procedure Translate(Src, Dest: PChar; ToOem: Boolean); override;

Description:

When the ToOem parameter is True, Translate converts the source string from the ANSI character set
to the OEM character set. If ToOem is False, Translate converts the source string from the OEM
character set to the ANSI character set.

TMySQLDataset 128

© 1999-2021, Microolap Technologies

Before translation DAC for MySQL components compare code page on server with the client one
automatically.

5.2.63. UnPrepare

Frees the resources allocated for a previously prepared query.

Syntax:

procedure UnPrepare;

Description:

Call UnPrepare to free the resources allocated for a previously prepared query on the server and
client sides.

Preparing a query consumes some database resources, so it is good practice for an application to
unprepare a query once it is done using it. The UnPrepare method unprepares a query.

 When you change the text of a query at runtime, the query is automatically closed and
unprepared.

5.2.64. UpdateCursorPos

Positions the cursor on the active record.

Syntax:

procedure UpdateCursorPos;

Description:

UpdateCursorPos is an internal routine used by many dataset methods to ensure that the physical
cursor is positioned on the active record. Normally an application should not need to call
UpdateCursorPos. Typically UpdateCursorPos is called to ensure that the physical cursor position
matches the logical cursor position.

5.2.65. UpdateRecord

Ensures that data-aware controls and detail datasets reflect record updates.

Syntax:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference129

© 1999-2021, Microolap Technologies

procedure UpdateRecord;

Description:

UpdateRecord is used internally by some dataset methods to inform data-aware controls of updates
and trigger an OnUpdateRecord event if cached updates are enabled. Applications should not need
to call UpdateRecord directly unless they provide custom dataset methods that bypass dataset
methods.

5.2.66. UpdateStatus

Reports the update status for the current record.

Syntax:

function UpdateStatus: TUpdateStatus;

Description:

Call UpdateStatus to determine the update status for the current record in a dataset when cached
updates are enabled. Update status can change frequently as records are edited, inserted, or deleted.
UpdateStatus offers a convenient method for applications to assess the current status before
undertaking or completing operations that depend on the update status of individual records in the
dataset.

5.2.67. FetchNext

Retrieves the next block of records from a fetch on demand dataset.

Syntax:

procedure FetchNext;

Description:

Call FetchNext to retrieve the next block of records from your fetch on demand dataset. Count of
records in this block depends from the TMySQLDataSet.Options.FetchRows property.

 For using then FetchNext method you need to enable the
TMySQLDataSet.Options.FetchOnDemand property.

TMySQLDataset 130

© 1999-2021, Microolap Technologies

5.3. Events

Please see TMySQLDataset events short descriptions below:

Derived from TDataSet

AfterCancel
Occurs after an application completes a request to cancel modifications to the active record.

AfterClose
Occurs after an application closes a dataset.

AfterDelete
Occurs after an application deletes a record.

AfterEdit
Occurs after an application starts editing a record.

AfterInsert
Occurs after an application inserts a new record.

AfterOpen
Occurs after an application completes opening a dataset and before any data access occurs.

AfterPost
Occurs after an application writes the active record to the database or cache returns to browse
state.

AfterRefresh
Occurs after an application refreshes the data in the dataset.

AfterScroll
Occurs after an application scrolls from one record to another.

BeforeCancel
Occurs before an application executes a request to cancel changes to the active record.

BeforeClose
Occurs before an application executes a request to close the dataset.

BeforeDelete
Occurs before an application attempts to delete the active record.

BeforeEdit
Occurs before an application enters edit mode for the active record.

BeforeInsert
Occurs before an application enters insert mode.

BeforeOpen
Occurs before an application executes a request to open a dataset.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference131

© 1999-2021, Microolap Technologies

BeforePost
Occurs before an application posts changes for the active record to the database or cache.

BeforeRefresh
Occurs immediately before an application refreshes the data in the dataset.

BeforeScroll
Occurs before an application scrolls from one record to another.

OnCalcFields
Occurs when an application recalculates calculated fields.

OnDeleteError
Occurs when an application attempts to delete a record and an exception is raised.

OnEditError
Occurs when an application attempts to modify or insert a record and an exception is raised.

OnFilterRecord
Occurs each time a different record in the dataset becomes the active record and filtering is
enabled.

OnNewRecord
Occurs when an application inserts or appends a new dataset record.

OnPostError
Occurs when an application attempts to modify or insert a record and an exception is raised.

In TMySQLDataSet

OnUpdateError
Occurs if an exception is generated when cached updates are applied to a database.

OnDeleting
Occurs after all checks before data deleting are passed but before an application deletes this
record from the database. This event allows to cancel record deleting.

OnInserting
Occurs after all checks before data insert are passed but before an application posts changes
for this new record to the database. This event allows to cancel record insertion.

OnPosting
Occurs after all checks before post are passed but before an application posts changes for the
active record to the database. This event allows to cancel data modification.

5.3.1. AfterCancel

Occurs after an application completes a request to cancel modifications to the active record.

Syntax:

TMySQLDataset 132

© 1999-2021, Microolap Technologies

property AfterCancel: TDataSetNotifyEvent;

Description:

Write an AfterCancel event handler to take specific action after an application cancels changes to
the active record. AfterCancel is called by the Cancel method after it updates the cursor position,
releases the lock on the active record if necessary, and sets the dataset state to dsBrowse. If an
application requires additional processing before returning control to a user after a Cancel event,
code it in the AfterCancel event.

Example:

This example updates the form's status bar with a message when an AfterCancel event occurs.

procedure TForm1.Table1AfterCancel(DataSet: TDataSet);
begin
 with TDataSet as TMySQLTable do
 StatusBar1.SimpleText := 'Record changes cancelled for ' + TableName;
end;

5.3.2. AfterClose

Occurs after an application closes a dataset.

Syntax:

property AfterClose: TDataSetNotifyEvent;

Description:

Write an AfterClose event handler to take specific action immediately after an application closes a
dataset. For example, as a security measure, an application might clear a PASSWORD entry from the
Params property of a database component when the dataset is closed.

AfterClose is called after a dataset is closed and the dataset state is set to dsInactive.

5.3.3. AfterDelete

Occurs after an application deletes a record.

Syntax:

property AfterDelete: TDataSetNotifyEvent;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference133

© 1999-2021, Microolap Technologies

Description:

Write an AfterDelete event handler to take specific action immediately after an application deletes
the active record in a dataset. AfterDelete is called by Delete after it deletes the record, sets the
dataset state to dsBrowse, and repositions the cursor on the record prior to the one just deleted.

See also: Example: AfterDelete, Format

5.3.4. AfterEdit

Occurs after an application starts editing a record.

Syntax:

property AfterEdit: TDataSetNotifyEvent;

Description:

Write an AfterEdit event handler to take specific action immediately after dataset enters edit mode.
AfterEdit is called by Edit after it enables editing of a record, recalculates calculated fields, and calls
the data event handler to process a record change.

Example:

This example updates the form's status bar with a message when an AfterEdit event occurs.

procedure TForm1.Table1AfterEdit(DataSet: TDataSet);
begin
 StatusBar1.SimpleText := 'Editing record';
end;

5.3.5. AfterInsert

Occurs after an application inserts a new record.

Syntax:

property AfterInsert: TDataSetNotifyEvent;

Description:

TMySQLDataset 134

© 1999-2021, Microolap Technologies

Write an AfterInsert event handler to take specific action immediately after an application inserts a
record. The Insert and Append methods generate an AfterInsert event after inserting or appending a
new record.

Example:

This example updates the form's status bar with a message when an AfterInsert event occurs.

procedure TForm1.MySQLTable1AfterInsert(DataSet: TDataSet);
begin
 StatusBar1.SimpleText := 'Inserting new record';
end;

5.3.6. AfterOpen

Occurs after an application completes opening a dataset and before any data access occurs.

Syntax:

property AfterOpen: TDataSetNotifyEvent;

Description:

Write an AfterOpen event handler to take specific action immediately after an application opens the
dataset. AfterOpen is called after the cursor for the dataset is opened and the dataset is put into
dsBrowse state. For example, an AfterOpen event handler might check the system registry to
determine the last record touched in the dataset the previous time the application ran, and position
the cursor at that record.

Example:

This example updates the form's status bar with a message when an AfterOpen event occurs.

procedure TForm1.Table1AfterOpen(DataSet: TDataSet);
begin
// now that the table is open, record information is available
 StatusBar1.SimpleText := 'Record ' +
 IntToStr(MySQLTable1.RecNo) +
 'from ' +
 IntToStr(MySQLTable1.RecordCount);
end;

5.3.7. AfterPost

Occurs after an application writes the active record to the database or cache returns to browse state.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference135

© 1999-2021, Microolap Technologies

Syntax:

property AfterPost: TDataSetNotifyEvent;

Description:

Write an AfterPost event handler to take specific action immediately after an application posts a
change to the active record. AfterPost is called after a modification, deletion, or insertion is made to
a record.

Example:

This example updates the form's status bar with a message when an AfterPost event occurs.

procedure TForm1.MySQLTable1AfterPost(DataSet: TDataSet);
begin
 StatusBar1.SimpleText := 'Record changes complete';
end;

5.3.8. AfterRefresh

Occurs after an application refreshes the data in the dataset.

Syntax:

property AfterRefresh: TDataSetNotifyEvent;

Description:

Write an AfterRefresh event handler to take specific action immediately after an application has
updated the records in the dataset. AfterRefresh is generated by calls to the Refresh method.

5.3.9. AfterScroll

Occurs after an application scrolls from one record to another.

Syntax:

property AfterScroll: TDataSetNotifyEvent;

Description:

TMySQLDataset 136

© 1999-2021, Microolap Technologies

Write an AfterScroll event handler to take specific action immediately after an application scrolls to
another record as a result of a call to the First, Last, MoveBy, Next, Prior, FindKey, FindFirst,
FindNext, FindLast, FindPrior, and Locate methods. AfterScroll is called after all other events
triggered by these methods and any other methods that switch from record to record in the dataset.

5.3.10. BeforeCancel

Occurs before an application executes a request to cancel changes to the active record.

Syntax:

property BeforeCancel: TDataSetNotifyEvent;

Description:

Write a BeforeCancel event to take specific action before an application carries out a request to
cancel changes. BeforeCancel is called by the Cancel method before it cancels a dataset operation
such as Edit, Insert, or Delete.

An application might use the BeforeCancel event to record a user's changes in an undo buffer.

5.3.11. BeforeClose

Occurs before an application executes a request to close the dataset.

Syntax:

property BeforeClose: TDataSetNotifyEvent;

Description:

Write a BeforeClose event to take specific action before an application closes a dataset. Calling
Close or setting the Active property to False results in a call to the BeforeClose event handler.

5.3.12. BeforeDelete

Occurs before an application attempts to delete the active record.

Syntax:

property BeforeDelete: TDataSetNotifyEvent;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference137

© 1999-2021, Microolap Technologies

Description:

Write a BeforeDelete event handler to take specific action before an application deletes the active
record. BeforeDelete is called by Delete before it actually deletes a record.

Making use of this event an application might, for example, display a dialog box asking for
confirmation before deleting the record. On denial of confirmation, the application could abort the
deletion by calling the Abort procedure.

5.3.13. BeforeEdit

Occurs before an application enters edit mode for the active record.

Syntax:

property BeforeEdit: TDataSetNotifyEvent;

Description:

Write a BeforeEdit event handler to take specific action before an application enables editing of the
active record.

For example, an application might keep a log of database edits, and therefore might record the edit
request, time, and user in a BeforeEdit event before entering edit state.

5.3.14. BeforeInsert

Occurs before an application enters insert mode.

Syntax:

property BeforeInsert: TDataSetNotifyEvent;

Description:

Write a BeforeInsert event handler to take specific action before an application inserts or appends a
new record. The Insert or Append method generates a BeforeInsert method before it sets the
dataset into dsInsert state.

See also: Example: BeforeInsert, Insert, AsInteger, FieldByName

TMySQLDataset 138

© 1999-2021, Microolap Technologies

5.3.15. BeforeOpen

Occurs before an application executes a request to open a dataset.

Syntax:

property BeforeOpen: TDataSetNotifyEvent;
property read-write

Description:

Write a BeforeOpen event handler to take specific action before an application opens a dataset for
viewing or editing. BeforeOpen is triggered when an application sets the Active property to True for
a dataset or an application calls Open.

5.3.16. BeforePost

Occurs before an application posts changes for the active record to the database.

Syntax:

property BeforePost: TDataSetNotifyEvent;

Description:

Write a BeforePost event handler to take specific action before an application posts dataset changes
to the database. BeforePost is triggered when an application calls the Post method. Post checks to
make sure all required fields are present, then calls BeforePost before posting the record.

An application might use BeforePost to perform validity checks on data changes before posting them
to the database. If it encountered a validity problem, it could call Abort to cancel the Post operation.

See also: Example: BeforePost,Abort

5.3.17. BeforeRefresh

Occurs immediately before an application refreshes the data in the dataset.

Syntax:

property BeforeRefresh: TDataSetNotifyEvent;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference139

© 1999-2021, Microolap Technologies

Description:

Write a BeforeRefresh event handler to take specific action immediately before an application
updates the records in the dataset. BeforeRefresh is generated by calls to the Refresh method.

5.3.18. BeforeScroll

Occurs before an application scrolls from one record to another.

Syntax:

property BeforeScroll: TDataSetNotifyEvent;

Description:

Write a BeforeScroll event handler to take specific action immediately before an application scrolls
to another record as a result of a call to the First, Last, MoveBy, Next, Prior, FindKey, FindFirst,
FindNext, FindLast, FindPrior, and Locate methods. BeforeScroll is called before all other events
triggered by these methods and any other methods that switch from record to record in the dataset.

5.3.19. OnCalcFields

Occurs when an application recalculates calculated fields.

Syntax:

property OnCalcFields: TDataSetNotifyEvent;

Description:

Write an OnCalcFields event handler to take specific action when an application recalculates
calculated fields. A calculated field is one that derives its value from the values in one or more fields
in the dataset, sometimes with additional processing.

When the AutoCalcFields property is True, OnCalcFields is triggered when:

§ A dataset is opened.

§ A dataset is put into dsEdit state.

§ Focus moves from one visual control to another, or from one column to another is a data-aware
grid control and modifications were made to the record.

TMySQLDataset 140

© 1999-2021, Microolap Technologies

§ A record is retrieved from a database.

 When the AutoCalcFields property is True, an OnCalcFields event handler should not
modify the dataset (or a linked dataset if it is part of a master-detail relationship), because
such modifications retrigger the OnCalcField event, leading to recursion.

If an application permits users to change data, OnCalcFields is frequently triggered. To reduce the
frequency with which OnCalcFields occurs, set AutoCalcFields to False. When AutoCalcFields is
False, OnCalcFields is not called when changes are made to individual fields within a record.

 When the dataset is the master table of a master-detail relationship, OnCalcFields occurs
before detail sets have been synchronized with the master table.

5.3.20. OnCompare

Occurs during the sorting fields.

Syntax:

property OnCompare: TCompareDataEvent;

Description:

Write a OnCompare event handler to perform custom client-side sortings.

See also: TDataSet.Methods.SortBy

5.3.21. OnDeleteError

Occurs when an application attempts to delete a record and an exception is raised.

Syntax:

type TDataSetErrorEvent = procedure(DataSet: TDataSet;
 E: EDatabaseError;
 var Action: TDataAction) of object;
property OnDeleteError: TDataSetErrorEvent;

Description:

Write an OnDeleteError event handler to handle exceptions that occur when an attempt to delete a
record fails.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference141

© 1999-2021, Microolap Technologies

DataSet is the dataset that failed to delete a record. E is a pointer to the database error object that
contains the exception error message so that an application can display an error message. Action
indicates how the dataset should respond to the error.

When OnDeleteError is first invoked, Action is always set to daFail. If the error handler can correct
the error condition that caused the handler to be invoked, set Action to daRetry before exiting the
handler. When Action is daRetry, the delete operation is tried again. If the error condition cannot be
corrected, the display of the error message can be suppressed, if desired, by setting Action to
daAbort instead of daFail.

5.3.22. OnDeleting

 Since v2.6.0

Occurs after all checks before data deleting are passed but before an application deletes this record
from the database. This event allows to cancel record deleting.

Syntax:

type
 TPostDataEvent = procedure(Sender: TObject; var Allow: boolean) of object;
property OnDeleting: TPostDataEvent;

Description:

Use this event if you need to check some custom conditions before delete active record from the
database and disable this deleting in some cases. If you'll set Allow parameter value to False DAC for
MySQL will not delete this record.

See also: OnPosting, OnInserting properties

5.3.23. OnEditError

Occurs when an application attempts to modify or insert a record and an exception is raised.

Syntax:

type TDataSetErrorEvent = procedure(DataSet: TDataSet;
 E: EDatabaseError;
 var Action: TDataAction) of object;
property OnEditError: TDataSetErrorEvent;

Description:

TMySQLDataset 142

© 1999-2021, Microolap Technologies

Write an OnEditError event handler to handle exceptions that occur when an attempt to edit a record
fails.

DataSet is the dataset that failed in editing a record. E is a pointer to the database error object that
contains the exception error message so that an application can display an error message. Action
indicates how the dataset should respond to the error.

When the OnEditError event handler is first invoked, Action is always set to daFail. If the error
handler can correct the error condition that caused the handler to be invoked, set Action to daRetry
before exiting the handler. When Action is daRetry, the edit operation is tried again. If an error
condition cannot be corrected, the display of the error message can be suppressed, if desired, by
setting Action to daAbort instead of daFail.

5.3.24. OnFilterRecord

Occurs each time a different record in the dataset becomes the active record and filtering is enabled.

Syntax:

type TFilterRecordEvent = procedure(DataSet: TDataSet;
 var Accept: Boolean) of object;
property OnFilterRecord: TFilterRecordEvent;

Description:

Write an OnFilterRecord event handler to specify for each record in a dataset whether it should be
visible to the application. To indicate that a record passes the filter condition, an OnFilterRecord
event handler must set the Accept parameter to True. To exclude a record, set the Accept parameter
to False.

Filtering is enabled if the Filtered property is True. When an application is processing a filter, the
State property for the dataset is dsFilter.

Use an OnFilterRecord event handler to filter records using a criterion that can't be implemented
using the Filter property.

 Be sure that the interactions between the Filter property and the OnFilterRecord event
handler do not result in an empty filter set when they are used simultaneously in an
application.

Example:

The following example shows how to use a field comparison when filtering records on a local table,
by using the OnFilterRecord event.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference143

© 1999-2021, Microolap Technologies

procedure TForm1.MySQLTable1FilterRecord(DataSet: TDataSet;
 var Accept: Boolean);
begin
 Accept := DataSet['DateOfPayment'] > DataSet['DateOfPurchase'] + 30;
end;

5.3.25. OnInserting

 Since v2.6.0

Occurs after all checks before data insert are passed but before an application posts changes for this
new record to the database. This event allows to cancel record insertion.

Syntax:

type
 TPostDataEvent = procedure(Sender: TObject; var Allow: boolean) of object;
property OnInserting: TPostDataEvent;

Description:

Use this event if you need to check some custom conditions before insert record to database and
disable this insert in some cases. If you'll set Allow parameter value to False DAC for MySQL will not
insert this record.

See also: OnPosting, OnDeleting properties

5.3.26. OnNewRecord

Occurs when an application inserts or appends a new dataset record.

Syntax:

property OnNewRecord: TDataSetNotifyEvent;

Description:

Write an OnNewRecord event handler to take specific actions as an application inserts or appends a
new record. OnNewRecord is called as part of the actual insert or append process. An application
might use the OnNewRecord event to set initial values for a record or as a way of implementing
cascading insertions in related datasets.

TMySQLDataset 144

© 1999-2021, Microolap Technologies

5.3.27. OnPostError

Occurs when an application attempts to modify or insert a record and an exception is raised.

Syntax:

type TDataSetErrorEvent = procedure(DataSet: TDataSet;
 E: EDatabaseError;
 var Action: TDataAction) of object;
property OnPostError: TDataSetErrorEvent;

Description:

Write an OnPostError event handler to handle exceptions that occur when an attempt to post a
record fails.

DataSet is the dataset that failed to post a record. E is a pointer to the database error object that
contains the exception error message so that an application can display an error message. Action
indicates how the dataset should respond to the error.

When OnPostError is first invoked, Action is always set to daFail. If the error handler can correct the
error condition that caused the handler to be invoked, set Action to daRetry before exiting the
handler. When Action is daRetry, the post operation is tried again. If an error condition cannot be
corrected, the display of the error message can be suppressed, if desired, by setting Action to
daAbort instead of daFail.

5.3.28. OnPosting

 Since v2.6.0

Occurs after all checks before post are passed but before an application posts changes for the active
record to the database. This event allows to cancel data modification.

Syntax:

type
 TPostDataEvent = procedure(Sender: TObject; var Allow: boolean) of object;
property OnPosting: TPostDataEvent;

Description:

Use this event if you need to check some custom conditions before post data changes and disable
post data changes. If you'll set Allow parameter value to False DAC for MySQL will not post data
changes to server.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference145

© 1999-2021, Microolap Technologies

See also: OnInserting, OnDeleting properties

5.3.29. OnUpdateError

Occurs if an exception is generated when cached updates are applied to a database.

Syntax:

TUpdateErrorEvent = procedure(DataSet: TDataSet;
 E: EDatabaseError;
 UpdateKind: TUpdateKind;
 var UpdateAction: TUpdateAction) of object;
property OnUpdateError: TUpdateErrorEvent;

Description:

Write an OnUpdateError event handler to respond to exceptions generated while applying cached
updates to a database.

Because there is a delay between the time a record is first cached and the time cached updates are
applied, there is a possibility that another application may change one or more of the same records in
the database before the cached changes can be applied. MySQL checks for this condition and raises
an exception. TMySQLDataSet responds by calling the OnUpdateError event handler if it exists.

DataSet is the name of the dataset to which updates are applied.

E is a pointer to a EDatabaseError object from which an application can extract an error message and
the actual cause of the error condition. The OnUpdateError handler can use this information to
determine how to respond to the error condition.

UpdateKind indicates whether the error occurred while inserting, deleting, or modifying a record.

UpdateAction indicates the action to take when the OnUpdateError handler exits. On entry into the
handler, UpdateAction is always set to uaFail. If OnUpdateError can handle or correct the error, set
UpdateAction to uaRetry before exiting the error handler.

The error handler can use the TField.OldValue and TField.NewValue properties to evaluate error
conditions and set TField.NewValue to a new value to reapply. In this case, set UpdateAction to
uaRetry before exiting.

 If a call to ApplyUpdates raises an exception and ApplyUpdates is not called within the
context of a try...except block, an error message is displayed. If an OnUpdateError handler
cannot correct the error condition and leaves UpdateAction set to uaFail, the error message
is displayed twice. To prevent redisplay, set UpdateAction to uaAbort in the error handler.

TMySQLDataset 146

© 1999-2021, Microolap Technologies

 The code in an OnUpdateError handler must not call any methods that make a different
record the current one.

6. TMySQLDirectQuery

 Since v2.5.7

 TMySQLDirectQuery component is intended for high-speed (3-4 times faster than with using of
TMySQLQuery component) data fetching.

Description:

TMySQLDirectQuery allows to execute SQL queries and retrieve resultsets with very high
performance. Meanwhile, it is not TDataset-compatible. This means that it can't be assigned to
TDatasource.Dataset property and you can't use it with visual DB-controls. TMySQLDirectQuery is
usually used in tasks where data require some processing without displaying it with/within visual DB-
controls.

 There are two nice examples of usage of this component:

1. Table2txt - This example shows how to save MySQL table data to a text file (one record
per line). Fields values are delimited by TAB character. To increase performance we used
TMySQLQueryDirect component.

2. TMySQLDirectQuery demo - allows you to compare TMySQLDirectQuery and
TMySQLQuery performance on data fetching.

You are welcome to download examples at
http://microolap.com/products/connectivity/mysqldac/download/

This component is used only for fetching data. That means that you can run queries that return
resultset (SELECT, EXPLAIN, SHOW and so) with this component. If you need to run data modification
or administration queries (INSERT, CREATE TABLE, COMMIT and so on) you can use
TMySQLDatabase.Execute method. If you need to get single value from database (1 row X 1 field
resultset) you can use one of TMySQLDatabase.SelectXXX methods.

See also: Properties, Methods

6.1. Properties

Please see TMySQLDirectQuery properties short descriptions below:

http://microolap.com/products/connectivity/mysqldac/download/

Microolap DAC for MySQL, v.3.3.2, Programmer's reference147

© 1999-2021, Microolap Technologies

In TMySQLDirectQuery

Active
Specifies whether or not a dataset is open.

Bof
Indicates whether or not a cursor is positioned at the first record in a dataset.

Database
Specifies the TMySQLDatabase component this component connects to to perform database
operations.

Eof
Indicates whether or not a cursor is positioned at the last record in a dataset.

FieldLength
Returns field databuffer size by field index.

FieldNames
Returns field name by it index.

FieldsCount
Indicates the number of fields in fetched resultset.

FieldTypes
Returns field type constant by it index.

FieldValues
Returns field value by it index.

IsEmpty
Indicates whether the dataset is empty.

RecNo
Indicates or sets the current record number in the dataset.

RecordCount
Indicates the total number of records associated with the dataset.

SQL
Contains the text of the SQL statement to execute for the query.

6.1.1. Active

Specifies whether or not a dataset is open.

Syntax:

property Active : boolean;

TMySQLDirectQuery 148

© 1999-2021, Microolap Technologies

Description:

Use Active to determine or set a dataset's connection to data in a database. When Active is False,
the dataset is closed; the dataset cannot read data from the database. When Active is True, data can
be read from the database.

Unlike TMySQLQuery component Active property of TMySQLDirectQuery is not published. It is for run-
time usage only.

An application must set Active to False before changing other properties that affect the status of the
dataset.

 Calling the Open method sets Active to True; calling the Close method sets Active to
False.

If an error occurs when setting Active property to True exception is raised and property value is set to
False.

See also: Close, Open, Refresh methods

6.1.2. Bof

Indicates whether or not a cursor is positioned at the First record in a dataset.

Syntax:

property Bof : boolean;

Description:

Examine Bof (beginning-of-file) to determine if the cursor is positioned at the first record in a dataset.
If Bof is True, the cursor is unequivocally on the first row in the dataset.

Bof is True when an application:

§ Opens an empty dataset.

§ Calls a dataset's First method.

§ Call a dataset's Prior method, and the method fails (because the cursor is already on the first
row in the dataset).

§ Bof is False in all other cases.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference149

© 1999-2021, Microolap Technologies

 If both Eof and Bof are True, the dataset is empty.

See also: IsEmpty property

6.1.3. Database

Specifies the TMySQLDatabase component this component connects to perform database operations.

Syntax:

property Database : TMySQLDatabase;

Description:

Use Database property to access the connection and some other properties, events, and methods of
the database component associated with this dataset.

In design-time you may choose database from drop-down list for given TMySQLDirectQuery
component.

See also: TMySQLDatabase component

6.1.4. Eof

Indicates whether or not a cursor is positioned at the last record in a dataset.

Syntax:

property Eof : boolean;

Description:

Examine Eof (end-of-file) to determine if the cursor is positioned at the last record in a dataset. If Eof
is True, the cursor is unequivocally on the last row in the dataset.

Eof is True when an application:

§ Opens an empty dataset.

§ Calls a dataset's Last method.

TMySQLDirectQuery 150

© 1999-2021, Microolap Technologies

§ Call a dataset's Next method, and the method fails (because the cursor is already on the last
row in the dataset).

Eof is False in all other cases.

 If both Eof and Bof are True, the dataset is empty.

See also: IsEmpty property

6.1.5. FieldLength

 Since v2.6.1

Returns field data buffer size by field index.

Syntax:

property FieldLength[aIndex : integer]: Cardinal;

Description:

Use FieldLength to get size of data buffer of field with index aIndex in active record. This can be
useful if you want to process BLOB fields with 0x00 character within the data.

Use FieldRawDataPointer method to get a direct pointer to field data buffer.

See also: FieldRawDataPointer method

6.1.6. FieldNames

Returns field name by its index.

Syntax:

property FieldNames[aIndex : integer]: string;

Description:

Use FieldNames to get name of field with index aIndex in fetched resultset.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference151

© 1999-2021, Microolap Technologies

See also: FieldsCount property, FieldIndexByName method

6.1.7. FieldsCount

Indicates the number of fields in fetched resultset.

Syntax:

property FieldsCount : integer;

Description:

Examine FieldsCount property to determine the number of fields in fetched resultset.

See also: FieldNames property

6.1.8. FieldValues

Returns field value by it index.

Syntax:

property FieldValues[aIndex : integer]: string;

Description:

Use FieldValues to get value of field with index aIndex in active record.

§ All fields values are returned as strings when using TMySQLDirectQuery component for
performance reasons.

§ NULL fields values are returned as empty strings. Use FieldIsNull method to distinguish empty
string values from NULL values.

 Use FieldRawDataPointer method if you need to work with BLOB fields.

 Please read this FAQ section if you want to use Unicode strings in your application: How to
use Unicode data in my application?

See also: FieldsCount property, FieldIsNull, FieldValueByName, FieldRawDataPointer methods

TMySQLDirectQuery 152

© 1999-2021, Microolap Technologies

6.1.9. IsEmpty

Indicates whether the dataset is empty.

Syntax:

property IsEmpty : boolean;

Description:

Examine IsEmpty to determine if dataset has no records. IsEmpty is True if dataset contains 0
records.

See also: RecordCount, Bof, Eof properties

6.1.10. RecNo

Indicates or sets the current record number in the dataset.

Syntax:

property RecNo : int64;

Description:

Examine RecNo to determine the record number of the current record in the dataset. Applications
might use this property with RecordCount to iterate through all the records in a dataset, though
typically record iteration is handled with calls to First, Last, MoveBy, Next and Prior methods.

 If accessing tables, RecNo can be set to a specific record number to position the cursor on
that record, beginning from 0.

See also: RecordCount property, First, Last, Next, Prior, MoveBy methods

6.1.11. RecordCount

Indicates the total number of records associated with the dataset.

Syntax:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference153

© 1999-2021, Microolap Technologies

property RecordCount : int64;

Description:

Examine RecordCount to determine the total number of records in the dataset. Applications might
use this property with RecNo property to iterate through all the records in a dataset, though typically
record iteration is handled with calls to First, Last, MoveBy, Next and Prior methods.

See also: RecNo property, First, Last, Next, Prior, MoveBy methods

6.1.12. SQL

Contains the text of the SQL statement to execute for the query.

Syntax:

property SQL : TStrings;

Description:

Use SQL to provide the SQL statement that a component executes when its Open method is called or
Active property is set to True. At design time the SQL property can be edited by invoking the String
List editor in the Object Inspector.

The SQL property may contain only one complete SQL statement at a time. In general, multiple
"batch" statements are not allowed unless a particular server supports them.

 Use TMySQLBatchExecute component if you want execute several queries in "batch"
mode.

See also: Active property, Open method, TMySQLBatchExecute component

6.1.13. TMySQLDirectQuery.Properties.FieldTypes

Returns field type constant by it index.

Syntax:

property FieldTypes[aIndex : integer]: byte;

TMySQLDirectQuery 154

© 1999-2021, Microolap Technologies

Description:

Use FieldTypes to get type of field constant defined in DAC for MySQL with index aIndex in fetched
resultset.

See also: FieldsCount property, FieldIndexByName method

6.2. Methods

Please see TMySQLDirectQuery methods short descriptions below:

In TMySQLDirectQuery

Close
Closes the dataset.

FieldIndexByName
Returns field index by its name.

FieldIsNull
Used to determine if field value is NULL.

FieldRawDataPointer
Returns direct pointer to field databuffer by field index.

FieldValueByFieldName
Returns field value by it name.

First
Positions the cursor on the first record in the dataset.

Last
Positions the cursor on the last record in the dataset.

MoveBy
Positions the cursor on a record relative to the active record in the dataset.

Next
Positions the cursor on the last record in the dataset.

Open
Opens the dataset.

Prior
Positions the cursor on the previous record in the dataset.

Refresh
Refreshes the dataset.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference155

© 1999-2021, Microolap Technologies

6.2.1. Close

Closes the dataset.

Syntax:

procedure Close;

Description:

Call this method to close result set and to free resources. Active property is set to False.

 You can set Active property to False instead of calling this method.

See also: Active property, Open method

6.2.2. FieldIndexByName

Returns field index by its name.

Syntax:

function FieldIndexByName(aFieldName : string) : integer;

Description:

Function FieldIndexByName returns zero-based index of the field with name aFieldName.

See also: FieldsCount, FieldNames properties

6.2.3. FieldIsNull

Used to determine if field value is NULL.

Syntax:

function FieldIsNull(aFieldIndex : integer) : boolean;overload;
function FieldIsNull(aFieldName : string) : boolean;overload;

TMySQLDirectQuery 156

© 1999-2021, Microolap Technologies

Description:

FieldIsNull are used to determine if field value is NULL in active record. First implementation checks
field by it index. Second implementation checks field by it name.

Returns:

FieldIsNull returns True if value of requested field is NULL in current record and False if value is not
NULL.

See also: FieldValues property, FieldValueByFieldName method

6.2.4. FieldRawDataPointer

 Since v2.6.1

Returns direct pointer to field data buffer by the field index.

Syntax:

function FieldRawDataPointer(aFieldIndex : integer) : pointer;

Description:

Call FieldRawDataPointer method to get direct pointer to data buffer of field with aFieldIndex index
in active record. This can be useful if you want to process BLOB fields with 0x00 character within it
data.

Use FieldLength property to get field data buffer size.

See also: FieldLength property, FieldIndexByName method

6.2.5. FieldValueByFieldName

Returns field value by it name.

Syntax:

function FieldValueByFieldName(aFieldName : string) : string;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference157

© 1999-2021, Microolap Technologies

Description:

Call FieldValueByFieldName to get value of field with name aFieldName in active record.

§ For performance reasons all fields values are returned as strings when using
TMySQLDirectQuery component.

§ NULL fields values are returned as empty string. Use FieldIsNull method to distinguish empty
string values from NULL values.

 Use FieldRawDataPointer method to work with BLOB fields.

 Please read this FAQ section if you want to use Unicode strings in your application: How to
use Unicode data in my application?

See also: FieldValues, FieldNames properties, FieldIsNull, FieldRawDataPointer methods

6.2.6. First

Positions the cursor on the first record in the dataset.

Syntax:

procedure First;

Description:

Call First to position the cursor on the first record in the dataset and make it the active record.

See also: RecNo property, Last, Next, Prior, MoveBy methods

6.2.7. Last

Positions the cursor on the last record in the dataset.

Syntax:

procedure Last;

TMySQLDirectQuery 158

© 1999-2021, Microolap Technologies

Description:

Call Last to position the cursor on the last record in the dataset and make it the active record.

See also: RecNo property, First, Next, Prior, MoveBy methods

6.2.8. MoveBy

Positions the cursor on a record relative to the active record in the dataset.

Syntax:

function MoveBy(aDistance : int64) : int64;

Description:

Call MoveBy to position the cursor on a record relative to the active record in the dataset. aDistance
indicates the number of records to move. A positive value for aDistance indicates forward progress
through the dataset, while a negative value indicates backward progress.

For example, the following statement moves backward through the dataset by 10 records:

MoveBy(-10);

Function returns the actual number of records moved. In most cases, Result is the absolute value of
aDistance, but if MoveBy encounters the beginning-of-file or end-of-file before moving aDistance
records, Result will be less than the absolute value of aDistance.

See also: RecNo, RecordCount properties, First, Last, Next, Prior methods

6.2.9. Next

Positions the cursor on the last record in the dataset.

Syntax:

procedure Next;

Description:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference159

© 1999-2021, Microolap Technologies

Call Next to position the cursor on the next record in the dataset and make it the active record.

See also: RecNo property, First, Last, Prior, MoveBy methods

6.2.10. Open

Opens the dataset.

Syntax:

procedure Open;

Description:

Call this method to execute query provided with SQL property and to fetch resultset. Active property is
set to True and you can read data from resultset after that.

 You can set Active property to True instead of calling this method.

If an error occurs during the dataset open exception is raised and Active property is set to False. Use
Close method to close resultset and free resources.

See also: Active property, Close, Refresh methods

6.2.11. Prior

Positions the cursor on the previous record in the dataset.

Syntax:

procedure Prior;

Description:

Call Prior to position the cursor on the previous record in the dataset and make it the active record.

See also: RecNo property, First, Last, Next, MoveBy methods

TMySQLDirectQuery 160

© 1999-2021, Microolap Technologies

6.2.12. Refresh

Refreshes the dataset.

Syntax:

procedure Refresh;

Description:

Call this method to close result set and run the same query again. This is the same as calling Close
and Open methods one by one.

See also: Close, Open methods

7. TMySQLDump

 TMySQLDump allows to get SQL script with a dump of a Database. This script can be executed
on another MySQL server by TMySQLBatchExecute component.

See also: Properties, Methods, Events

7.1. Properties

Please see TMySQLDump properties short descriptions below:

CompleteInsert
An option to include the field names in "insert" command

Database
Points to TMySQLDatabase component which sets a DB to be connected with.

Delimiter
Sets the SQL statements delimiter.

DisableKeys
Generates "ALTER TABLE <TableName> DISABLE KEYS" SQL statements.

DisableUniqueChecks
Generates SQL statements to disable uniqueness checks for secondary indexes in InnoDB
tables.

DropObject
Generates DROP TABLE SQL statement.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference161

© 1999-2021, Microolap Technologies

DumpOption
Sets DB dump type.

ExcludeTables
Exclude the contents of specified tables from dump process.

ExtInsert
Generates INSERT SQL Statement using extended syntax.

ExtInsertsCount
Sets the number of <FIELDVALUES> sections for single INSERT statement with extended syntax.

IgnoreLockTables
Exclude the 'LOCK TABLE' clause of specified tables from dump process.

IncludeHeader
Sets if the dump information will be written at the beginning of the SQL file.

Limit
Sets maximum number of rows to be retrieved from server at once during dumping tables.

LineComment
Sets the line comment string for SQL statements.

LockTables
Specifies whether to add "LOCK TABLE" clause to the dump script.

RewriteFile
Sets SQL file opening mode.

SQLFile
Sets a full path to a file with SQL script will be generated.

TableList
Sets a list of DB tables to be dumped.

UseCreateDB
Generates CREATE DATABASE SQL statements.

UseHexBlob
Specifies whether to use hexadecimal notation when dumping binary columns.

7.1.1. CompleteInsert

 Since v2.6.1

An option to include the field names in INSERT command.

Syntax:

CompleteInsert : Boolean;

TMySQLDump 162

© 1999-2021, Microolap Technologies

Description:

CompleteInsert set in True generates INSERT SQL Statement with field names.

For example, CompleteInsert = False generates the following SQL statements:

INSERT INTO TableName VALUES (value1, value2, ...);

And CompleteInsert = True generates the following SQL statements:

INSERT INTO TableName(fieldname1, fieldname2, ...) VALUES (value1, value2, ...);

See also: ExtInsert property

7.1.2. Database

Points to TMySQLDatabase component which sets a DB to be connected with.

Syntax:

Database: TMySQLDatabase;

7.1.3. Delimiter

Sets the SQL statements delimiter.

Syntax:

Delimiter: Char;

Description:

SQL statements included into SQL script will be separated by the symbol defined in Delimiter
property (";" by default).

See also: LineComment property

7.1.4. DisableKeys

Generates "ALTER TABLE <TableName> DISABLE KEYS" SQL statements.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference163

© 1999-2021, Microolap Technologies

Syntax:

property DisableKeys: Boolean default False;

Description:

Set DisableKeys property value to True to generate the following SQL statements.

In dump script header:

/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0
*/;

In dump script footer:

/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;

Before table dump:

/*!40000 ALTER TABLE <TableName> DISABLE KEYS */;

After table dump:

/*!40000 ALTER TABLE <TableName> ENABLE KEYS */;

 Disabling foreign key checking can be useful for reloading InnoDB tables in an order
different from that required by their parent/child relationships. Take a look at MySQL Manual
for details.

7.1.5. DisableUniqueChecks

 Since v2.7.0

Generates SQL statements to disable uniqueness checks for secondary indexes in InnoDB tables.

Syntax:

property DisableUniqueChecks: Boolean default True;

Description:

Set DisableUniqueChecks property value to True to generate the following SQL statements.

TMySQLDump 164

© 1999-2021, Microolap Technologies

In dump script header:

/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;

In dump script footer:

/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;

 Take a look at MySQL Manual for additional details.

7.1.6. DropObject

Generates DROP TABLE SQL statement.

Syntax:

DropObject : Boolean;

Description:

DropObject set in True generates SQL statement:

DROP TABLE IF EXISTS <ObjectName>;

7.1.7. DumpOption

Sets DB dump type.

Syntax:

DumpOption : TDumpOption;
Type
TDumpOption = (dStructure,dData,dAll);

Description:

Allows to choose DB dump type:

dStructure
Generate SQL script containing the DB structure only;

dData
Generate SQL script containing the data only;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference165

© 1999-2021, Microolap Technologies

dAll
Generate SQL script containing both structure and data.

7.1.8. ExcludeTables

Exclude the contents of specified tables from dump process.

Syntax:

property ExcludeTables: TStrings;

Description:

Do not dump any tables matching the table pattern. The pattern is interpreted according to the same
rules as for TableList property.

When both TableList and ExcludeTables are given, the behavior is to dump just the tables that match
at least one TableList string but no ExcludeTables strings. If ExcludeTables appears without
TableList, then tables matching ExcludeTables are excluded from what is otherwise a normal dump.

See also: TableList property

7.1.9. ExtInsert

Generates INSERT SQL Statement using extended syntax.

Syntax:

ExtInsert : Boolean;

Description:

ExtInsert set in True generates INSERT SQL Statement using extended syntax. For example, ExtInsert
= True generates the series of SQL statements:

INSERT INTO (<FieldList>) VALUES (<FIELDVALUES>),(<FIELDVALUES>),...,
(<FIELDVALUES>);

Every single INSERT statement will contain ExtInsertsCount <FIELDVALUES> sections.

See also: ExtInsertsCount, CompleteInsert properties

TMySQLDump 166

© 1999-2021, Microolap Technologies

7.1.10. ExtInsertsCount

Sets the number of <FIELDVALUES> sections for single INSERT statement with extended syntax.

Syntax:

property ExtInsertsCount : integer;

Description:

Every single INSERT statement will contain ExtInsertsCount <FIELDVALUES> sections.

INSERT INTO (<FieldList>) VALUES (<FIELDVALUES>),(<FIELDVALUES>),...,
(<FIELDVALUES>);
INSERT INTO (<FieldList>) VALUES (<FIELDVALUES>),(<FIELDVALUES>),...,
(<FIELDVALUES>);
...
INSERT INTO (<FieldList>) VALUES (<FIELDVALUES>),(<FIELDVALUES>),...,
(<FIELDVALUES>);

See also: ExtInsert property

7.1.11. IgnoreLockTables

Exclude the 'LOCK TABLE' clause of specified tables from dump process.

Syntax:

IgnoreLockTables : TStrings;

Description:

If there is a need to add "LOCK TABLE" clause not for each table, set property LockTables to True and
specify tables for which there are no need to add this clause in IgnoreLockTables property.

7.1.12. IncludeHeader

Sets if the dump information will be written at the beginning of the SQL file.

Syntax:

property IncludeHeader : Boolean default True;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference167

© 1999-2021, Microolap Technologies

Description:

If IncludeHeader property is set in True, several comments strings with the information about dump
version, host name, and database name will be included in the header of the SQL file defined in the
SQLFile property.

7.1.13. Limit

 Since v2.6.1

Sets maximum number of rows to be retrieved from server at once during dumping tables.

Syntax:

property Limit : Cardinal; default 1024;

Description:

This property value limits number of rows to be retrieved from server at once during dump process.
For example, a table with 2050 rows will be retrieved in 3 times - the first 1024 rows, the second
1024, and the final 2 rows. This allows to limit memory usage for large tables dumping. You can
reduce this value if you're dumping really huge BLOB fields.

 This property doesn't correlate with ExtInsertCount property. ExtInsertCount property value
is used when dumped data are being saved to a file, meanwhile Limit property value is used
when data are being retrieved from server.

7.1.14. LineComment

 Since v2.5.5

Sets the line comment string for SQL statements.

Syntax:

property LineComment : string;

Description:

Comments included into SQL script will be preceded by the string defined in LineComment property
("--" by default).

TMySQLDump 168

© 1999-2021, Microolap Technologies

7.1.15. LockTables

Specifies whether to add "LOCK TABLE" clause to the dump script.

Syntax:

LockTables : Boolean;

Description:

If LockTables set to True then for each dumped table in the script will be added "LOCK TABLE"
clause.

See also: IgnoreLockTables property

7.1.16. RewriteFile

Sets SQL file opening mode.

Syntax:

property RewriteFile : Boolean default True;

Description:

If RewriteFile property is set in True, and file defined in the SQLFile property exists, then this file will
be overwritten. Otherwise the dump will be appended to the end of file.

7.1.17. SQLFile

Sets a full path to a file with SQL script will be generated.

Syntax:

SQLFile : TFileName;

Description:

If SQLFile was not set, the current directory will be used and <database name>.sql file will be created.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference169

© 1999-2021, Microolap Technologies

7.1.18. TableList

Sets a list of DB tables to be dumped.

Syntax:

TableList : TSTrings;

Description:

Use TableList to set a list of DB tables to be dumped. If TableList is empty SQL script will not be
generated.

7.1.19. UseCreateDB

Generates CREATE DATABASE SQL statements.

Syntax:

UseCreateDB : Boolean;

Description:

UseCreateDB set in True generates the following pair of SQL statements:

CREATE DATABASE /*!32312 IF NOT EXISTS*/ <DBName>;
USE <DBName>;

7.1.20. UseHexBlob

Dump binary columns using hexadecimal notation.

Syntax:

UseHexBlob : Boolean;

Description:

If UseHexBlob set to True then dump binary columns using hexadecimal notation. For example, 'abc'
becomes 0x616263.

TMySQLDump 170

© 1999-2021, Microolap Technologies

7.2. Methods

Please see TMySQLDump methods short descriptions below:

Execute
Generates SQL script.

DumpToStream
Generates SQL script to TStream descendant.

7.2.1. DumpToStream

 Since v2.5.5

Generates SQL script to TStream descendant.

Syntax:

procedure DumpToStream(aStream: TStream);

Description:

DumpToStream method generates SQL script to TStream descendant (for example
TMemoryStream, TFileStream and so on).

See also: Execute method

7.2.2. Execute

Generates SQL script to file.

Syntax:

function Execute: Boolean;

Description:

Execute function generates SQL script to file specified in SQLFile property. Execute returns False on
error, and True on success.

See also: DumpToSream method, SQLFile property

Microolap DAC for MySQL, v.3.3.2, Programmer's reference171

© 1999-2021, Microolap Technologies

7.3. Events

Please see TMySQLDump events short descriptions below:

BeforeDump
Occurs immediately before starting a dump process.

OnDataProcess
Occurs when each table data from TableList processing begins.

OnProcess
Occurs when each table from TableList processing begins.

7.3.1. BeforeDump

Occurs immediately before starting a dump process.

Syntax:

property BeforeDump: TNotifyEvent;

Description:

Write a BeforeDump event handler to take application-specific actions before the dump component
starting a dump process.

See also: TMySQLDump.Methods.DumpToStream

7.3.2. OnDataProcess

Occurs when each table data from TableList processing begins.

Syntax:

type TOnDataProcess = procedure (Sender : TObject;
 Percent : Integer) of object;
OnDataProcess: TOnDataProcess;

Description:

Create OnDataProcess event handler to get information about current table SQL script generation
process status.

TMySQLDump 172

© 1999-2021, Microolap Technologies

Percent contains progress data in percents about current table SQL script generation process. Is valid
if DumpOption property is set to dData or dAll.

7.3.3. OnProcess

Occurs when each table from TableList processing begins.

Syntax:

type TOnProcess = procedure (Sender : TObject;
 Table : String;
 Percent : Integer) of object;
OnProcess : TOnProcess;

Description:

Create OnProcess event handler to get information about whole SQL script generation process status.

Table
Contains the name of the table which is currently in processing;

Percent
Contains progress data in percents about whole SQL script generation process. Is valid if
DumpOption property is set to dAll.

8. TMySQLMacroQuery

 TMySQLMacroQuery is the descendant of TMySQLQuery component and supports all of its
properties, methods, events, and functionalities. The difference is in Macros and MacroChar
properties which help to modify SQL script text in design-time and run-time with easy.

See also: Properties, Methods, Events

8.1. Properties

Please see TMySQLMacroQuery properties short descriptions below:

Derived from TDataSet

Active
Specifies whether or not a dataset is open.

AutoCalcFields

Microolap DAC for MySQL, v.3.3.2, Programmer's reference173

© 1999-2021, Microolap Technologies

Determines when the OnCalcFields event is triggered.

Bof
Indicates whether or not a cursor is positioned at the first record in a dataset.

Bookmark
Specifies the current bookmark in the dataset.

CachedUpdates
Does not affect on dataset behavior.

DefaultFields
Indicates whether a dataset's underlying field components are generated dynamically when the
dataset is opened.

Eof
Indicates whether or not a cursor is positioned at the last record in a dataset.

FieldCount
Indicates the number of field components associated with the dataset.

FieldDefList
Points to the list of field definitions for the dataset.

FieldList
Lists the field components of a dataset.

Fields
Lists all non-aggregate field components of the dataset.

FieldValues
Provides access to the values for all fields in the active record for the dataset.

Found
Indicates whether or not moving to a different record is successful.

Modified
Indicates whether the active record is modified.

Name
Designates the name of the dataset as referenced by other components.

ObjectView
Specifies whether fields are to be stored hierarchically or flattened out in the Fields property.

SparseArrays
Determines whether a unique TField object is created for each element of an array field.

State
Indicates the current operating mode of the dataset.

Derived from TMySQLDataSet

TMySQLMacroQuery 174

© 1999-2021, Microolap Technologies

AllowSequenced
Determines that database records can be located by sequence numbers.

AutoRefresh
Specifies whether server-generated field values are refetched automatically.

AvailableResultsetCount
Indicates count of resultsets available to fetch from multiresultset query or stored procedure.
This property is useful when query or stored procedure returns more than one dataset.

BlockReadSize
Determines how many record buffers are read in each block.

CacheBlobs
Determines whether BLOB fields are cached in memory.

Database
Specifies the database component for which this dataset represents one or more tables.

Filter
Specifies the text of the current filter for a dataset.

Filtered
Specifies whether filtering is active for a dataset.

FilterOptions
Specifies whether filtering is case insensitive, and whether or not partial comparisons are
permitted when filtering records.

KeySize
Specifies the size of the key for the current index of the dataset.

LastInsertID
Get last inserted value of AUTO_INCREMENT column from MySQL server.

RecNo
Indicates the current record in the dataset.

RecordCount
Indicates the total number of records associated with the dataset.

RecordSize
Indicates the size of a record in the dataset.

SortFieldNames
Specifies field names and sorting order to sort opened dataset by these fields on the client side
without refetching data from server.

UpdateMode
Determines how MySQL finds records when updating to an SQL database.

UpdateObject
Specifies the update object component used to update a read-only result set.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference175

© 1999-2021, Microolap Technologies

In TMySQLQuery

DataSource
Specifies the data source component from which to extract current field values to use with
same-name parameters in the query SQL statement.

Handle

Specifies the cursor handle for the query.

MultiResultsetNo
Specifies the resultset to associate with component when it become active. This property is
useful when query or stored procedure returns more than one dataset.

ParamCheck
Specifies whether the parameter list for a query is regenerated if the SQL property changes at
runtime.

ParamCount

Indicates the current number of parameters for the query.

Params
Contains the parameters for a query SQL statement.

Prepared
Determines whether or not a query is prepared for execution.

ProcessComments
Allows to choose what kind of comments to cut from SQL query text before sending it to server.

RequestLive
Specifies whether an application expects to receive a live result set when the query executes.

RowsAffected
Returns the number of rows operated upon by the latest query execution.

SQL
Contains the text of the SQL statement to execute for the query.

SQLBinary
Points to the binary data stream that represents an SQL query statement or result set.

Text
Points to the actual text of the SQL query passed to MySQL.

UniDirectional
Determines whether or not bidirectional cursors are enabled for a query's result set.

In TMySQLMacroQuery

TMySQLMacroQuery 176

© 1999-2021, Microolap Technologies

MacroChar
Sets the macro definition symbol.

MacroCount
Contains the number of macro definitions in SQL query.

Macros
Contains Macros array with current query macro definitions.

8.1.1. MacroChar

Sets the macro definition symbol.

Syntax:

MacroChar: Char;

Description:

Sets a symbol which will be considered as the beginning of the macro in SQL script text. This symbol
will be used the same way as symbol ":" intended for query parameters identification. The default
value of MacroChar is "%".

8.1.2. MacroCount

Contains the number of macro definitions in SQL query.

Syntax:

MacroCount : Word;

 Run-Time read-only property.

8.1.3. Macros

Contains Macros array with current query macro definitions.

Syntax:

Macros: TParams;

Description:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference177

© 1999-2021, Microolap Technologies

When you run SQL query with macro definitions included, TMySQLMacroQuery creates Macros array
containing current query macro definitions. Use MacroCount property to get the number of macro
definitions.

8.2. Methods

Please see TMySQLMacroQuery methods short descriptions below:

Derived from TDataSet

ActiveBuffer
Returns a pointer to the buffer for the active record.

Append
Adds a new, empty record to the end of the dataset.

AppendRecord
Adds a new, populated record to the end of the dataset and posts it to the database.

CheckBrowseMode
Automatically posts or cancels data changes when an application changes which record in the
dataset is the active record.

ClearFields
Clears the contents of all fields for the active record.

Close
Closes a dataset.

ControlsDisabled
Indicates whether data-aware controls do not update their display to reflect changes to the
dataset.

CursorPosChanged
Marks the internal cursor position as invalid.

Delete
Deletes the active record and positions the cursor on the next record.

DisableControls
Disables data display in data-aware controls associated with the dataset.

Edit
Enables editing of data in the dataset.

EnableControls
Re-enables data display in data-aware controls associated with the dataset.

FieldByName
Finds a field based on its name.

TMySQLMacroQuery 178

© 1999-2021, Microolap Technologies

FindField
Searches for a specified field in the dataset.

FindFirst
Implements a virtual method for positioning the cursor on the first record in a filtered dataset.

FindLast
Implements a virtual method for positioning the cursor on the last record in a filtered dataset.

FindNext
Implements a virtual method for positioning the cursor on the next record in a filtered dataset.

FindPrior
Implements a virtual method for positioning the cursor on the previous record in a filtered
dataset.

First
Positions the cursor on the first record in the dataset.

FreeBookmark
Frees the resources allocated for a specified bookmark.

GetBookmark
Allocates a bookmark for the current cursor position in the dataset.

GetDetailDataSets
Fills a list with a dataset for every detail dataset that is not the value of a nested dataset field.

GetFieldList
Retrieves a specified set of field objects into a list.

GetFieldNames
Retrieves a list of names for all fields in a dataset.

GotoBookmark
Implements a virtual method to position the cursor on the record pointed to by a specified
bookmark.

Insert
Inserts a new, empty record in the dataset.

InsertRecord
Inserts a new, populated record to the dataset and posts it to the database.

IsEmpty
Indicates whether the dataset contains no records.

IsLinkedTo
Indicates whether a dataset is linked to a specified data source.

Last
Positions the cursor on the last record in the dataset.

MoveBy

Microolap DAC for MySQL, v.3.3.2, Programmer's reference179

© 1999-2021, Microolap Technologies

Positions the cursor on a record relative to the active record in the dataset.

Next
Positions the cursor on the next record in the dataset.

Open
Opens the dataset.

Prior
Positions the cursor on the previous record in the dataset.

Refresh
Refetches data from the database to update a dataset's view of data.

Resync
Refetches the active record and the records that precede and follow it.

SetFields
Sets the values for all fields in a record.

UpdateCursorPos
Positions the cursor on the active record.

UpdateRecord
Ensures that data-aware controls and detail datasets reflect record updates.

Derived from TMySQLDataSet

ApplyUpdates
Writes a dataset's pending cached updates to the database.

BookmarkValid
Tests the validity of a specified bookmark.

Cancel
Cancels modifications to the current record if those changes are not yet posted.

CancelUpdates
Clears all pending cached updates from the cache and restores the dataset its prior state.

CheckOpen
Checks the result of a call to the MySQL.

CloseDatabase
Closes a database connection associated with the database.

CommitUpdates
Clears the cached updates buffer.

CompareBookmarks
Indicates the relationship between two bookmarks.

FetchAll

TMySQLMacroQuery 180

© 1999-2021, Microolap Technologies

Retrieves all records from the current cursor position to the end of the file and stores them
locally.

FlushBuffers
Posts all changes that have been written to the record buffer.

GetBlobFieldData
Reads BLOB data into a buffer.

GetCurrentRecord
Retrieves the current record into a buffer.

GetFieldData
Retrieves the current value of a field into a buffer.

GetIndexInfo
Retrieves information about the current index into the index data fields of the dataset.

GetLastInsertID
Returns the ID generated for an AUTO_INCREMENT column by the previous query.

Locate
Searches the dataset for a specified record and makes that record the current record.

Lookup
Retrieves field values from a record that matches specified search values.

OpenDatabase
Opens the database that contains the dataset.

Post
Writes a modified record to the database.

RevertRecord
Restores the current record in the dataset to an unmodified state when cached updates are
enabled.

SortBy
Sorts opened dataset on client side without refetching data from server.

Translate
Converts a data string between the ANSI character set used by Delphi (and Windows), and the
local code page (OEM character set).

UpdateStatus
Reports the update status for the current record.

Derived from TMySQLQuery

Create
Creates an instance of a query component.

Destroy

Microolap DAC for MySQL, v.3.3.2, Programmer's reference181

© 1999-2021, Microolap Technologies

Destroys the instance of a query.

ExecSQL
Executes the SQL statement for the query.

GetDetailLinkFields
Fills lists with the master and detail fields of the link.

ParamByName
Accesses parameter information based on a specified parameter name.

Prepare
Sends a query for optimization prior to execution.

UnPrepare
Frees the resources allocated for a previously prepared query.

In TMySQLMacroQuery

Reopen
Reopens current query.

MacroByname
Returns Macros property item which property Name is equal to Value.

8.2.1. Reopen

Reopens current query.

Syntax:

procedure Reopen;

8.2.2. MacroByname

Returns Macros property item which property Name is equal to Value.

Syntax:

function MacroByname(const Value : String) : TParams;

Description:

Use MacroByname to get macro definition by its name.

TMySQLMacroQuery 182

© 1999-2021, Microolap Technologies

8.3. Events

Please see TMySQLMacroQuery events short descriptions below:

Derived from TDataSet

AfterCancel
Occurs after an application completes a request to cancel modifications to the active record.

AfterClose
Occurs after an application closes a dataset.

AfterDelete
Occurs after an application deletes a record.

AfterEdit
Occurs after an application starts editing a record.

AfterInsert
Occurs after an application inserts a new record.

AfterOpen
Occurs after an application completes opening a dataset and before any data access occurs.

AfterPost
Occurs after an application writes the active record to the database or cache returns to browse
state.

AfterRefresh
Occurs after an application refreshes the data in the dataset.

AfterScroll
Occurs after an application scrolls from one record to another.

BeforeCancel
Occurs before an application executes a request to cancel changes to the active record.

BeforeClose
Occurs before an application executes a request to close the dataset.

BeforeDelete
Occurs before an application attempts to delete the active record.

BeforeEdit
Occurs before an application enters edit mode for the active record.

BeforeInsert
Occurs before an application enters insert mode.

BeforeOpen
Occurs before an application executes a request to open a dataset.

BeforePost

Microolap DAC for MySQL, v.3.3.2, Programmer's reference183

© 1999-2021, Microolap Technologies

Occurs before an application posts changes for the active record to the database or cache.

BeforeRefresh
Occurs immediately before an application refreshes the data in the dataset.

BeforeScroll
Occurs before an application scrolls from one record to another.

OnCalcFields
Occurs when an application recalculates calculated fields.

OnDeleteError
Occurs when an application attempts to delete a record and an exception is raised.

OnEditError
Occurs when an application attempts to modify or insert a record and an exception is raised.

OnFilterRecord
Occurs each time a different record in the dataset becomes the active record and filtering is
enabled.

OnNewRecord
Occurs when an application inserts or appends a new dataset record.

OnPostError
Occurs when an application attempts to modify or insert a record and an exception is raised.

Derived from TMySQLDataSet

OnUpdateError
Occurs if an exception is generated when cached updates are applied to a database.

OnDeleting
Occurs after all checks before data deleting are passed but before an application deletes this
record from the database. This event allows to cancel record deleting.

OnInserting
Occurs after all checks before data insert are passed but before an application posts changes
for this new record to the database. This event allows to cancel record insertion.

OnPosting
Occurs after all checks before post are passed but before an application posts changes for the
active record to the database. This event allows to cancel data modification.

In TMySQLMacroQuery

TMySQLMacroQuery has no own events

TMySQLMonitor 184

© 1999-2021, Microolap Technologies

9. TMySQLMonitor

 TMySQLMonitor monitors dynamic SQL passed to the MySQL server.

See also: Properties, Events

9.1. Properties

Please see TMySQLMonitor properties short descriptions below:

Active
Turns the SQL monitor on and off.

TraceFlags
Indicates which database operations are traced.

Handle
Specifies the window handle that the SQL monitor uses to receive asynchronous messages.

9.1.1. Active

Turns the SQL monitor on and off.

Syntax:

Active: Boolean;

Description:

Use Active to turn the SQL monitor on and off. When Active is True, the SQL monitor receives an
OnSQL event for every database operation specified by the TraceFlags property. When Active is
False, the SQL monitor does not receive any events.

9.1.2. Handle

Specifies the window handle that the SQL monitor uses to receive asynchronous messages.

Syntax:

Handle: HWND;

Description:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference185

© 1999-2021, Microolap Technologies

The database operations that trigger OnSQL events are monitored by a separate thread of execution.
When that thread detects a relevant database operation, it sends a Windows message to the window
identified by this Handle.

9.1.3. TraceFlags

Indicates which database operations are traced.

Syntax:

type
 TMySQLTraceFlag = (tfQPrepare,
 tfQExecute,
 tfQFetch,
 tfConnect,
 tfTransact,
 tfMisc);
 TMySQLTraceFlags = set of TMySQLTraceFlag;
property TraceFlags: TMySQLTraceFlags;

Description:

Use TraceFlags to specify which database operations the SQL Monitor should track in an application
at runtime. TraceFlags enables performance tuning and SQL debugging when working with remote
SQL database servers.

 Normally trace options are set from the SQL Monitor rather than setting TraceFlags in
application code.

9.2. Events

Please see TMySQLMonitor events short descriptions below:

OnSQL
Reports dynamic SQL activity on MySQL applications.

9.2.1. OnSQL

Reports dynamic SQL activity on MySQL applications.

Syntax:

type TSQLEvent = procedure(const Application, Database, Msg, SQL, ErrorMsg:
string;
 DataType: TMySQLTraceFlag; const ExecutedOK: boolean; EventTime: TDateTime)

TMySQLMonitor 186

© 1999-2021, Microolap Technologies

of object;
OnSQL: TSQLEvent;

Description:

Write an OnSQL event handler to report dynamic SQL activity on MySQL applications.

Application
Owner application name;

Database
If SQL is executed within a specific database, this parameter indicates its name;

Msg
This parameter indicates the type of the executed operation as string - CONNECT,
DISCONNECT, EXECUTE, FETCH, etc.;

SQL
This parameter contains full executed SQL statement, if such is available;

ErrorMsg
If statement executed with error, this parameter returns the error message, otherwise it is
empty;

DataType
This parameter indicates the type of the executed operation as enumerated data;

ExecutedOK
This parameter indicates if operation execution succeeded;

EventTime
Indicates the time when the command passed to or from the MySQL server.

10. TMySQLQuery

 TMySQLQuery encapsulates a dataset with a result set that is based on an SQL statement.

Description:

Use TMySQLQuery to access one or more MySQL tables in a database using SQL statements.
TMySQLQuery component is useful because it can:

§ Access more than one table at a time (called a "join" in SQL).

§ Automatically access a subset of rows and columns in its underlying table(s), rather than
always returning all rows and columns.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference187

© 1999-2021, Microolap Technologies

 TMySQLQuery provides BDE-like functionality and is fully compatible with TDatasource
and visual DB-controls. If you need to fetch some data without displaying them you can use
high-performance TMySQLDirectQuery component.

See also: Properties, Methods, Events

10.1. Properties

Please see TMySQLQuery properties short descriptions below:

Derived from TDataSet

Active
Specifies whether or not a dataset is open.

AutoCalcFields
Determines when the OnCalcFields event is triggered.

Bof
Indicates whether or not a cursor is positioned at the first record in a dataset.

Bookmark
Specifies the current bookmark in the dataset.

CachedUpdates
Does not affect on dataset behavior.

DefaultFields
Indicates whether a dataset's underlying field components are generated dynamically when the
dataset is opened.

Eof
Indicates whether or not a cursor is positioned at the last record in a dataset.

FieldCount
Indicates the number of field components associated with the dataset.

FieldDefList
Points to the list of field definitions for the dataset.

FieldList
Lists the field components of a dataset.

Fields

Lists all non-aggregate field components of the dataset.

FieldValues
Provides access to the values for all fields in the active record for the dataset.

TMySQLQuery 188

© 1999-2021, Microolap Technologies

Found
Indicates whether or not moving to a different record is successful.

Modified
Indicates whether the active record is modified.

Name
Designates the name of the dataset as referenced by other components.

ObjectView
Specifies whether fields are to be stored hierarchically or flattened out in the Fields property.

SparseArrays
Determines whether a unique TField object is created for each element of an array field.

State
Indicates the current operating mode of the dataset.

Derived from TMySQLDataSet

AllowSequenced
Determines that database records can be located by sequence numbers.

AutoRefresh
Specifies whether server-generated field values are refetched automatically.

AvailableResultsetCount
Indicates count of resultsets available to fetch from multiresultset query or stored procedure.
This property is useful when query or stored procedure returns more than one dataset.

BlockReadSize
Determines how many record buffers are read in each block.

CacheBlobs
Determines whether BLOB fields are cached in memory.

Database
Specifies the database component for which this dataset represents one or more tables.

Filter
Specifies the text of the current filter for a dataset.

Filtered
Specifies whether filtering is active for a dataset.

FilterOptions
Specifies whether filtering is case insensitive, and whether or not partial comparisons are
permitted when filtering records.

KeySize
Specifies the size of the key for the current index of the dataset.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference189

© 1999-2021, Microolap Technologies

LastInsertID
Get last inserted value of AUTO_INCREMENT column from MySQL server.

MultiResultsetNo
Specifies the resultset to associate with component when it become active. This property is
useful when query or stored procedure returns more than one dataset.

RecNo
Indicates the current record in the dataset.

RecordCount
Indicates the total number of records associated with the dataset.

RecordSize
Indicates the size of a record in the dataset.

SortFieldNames
Specifies field names and sorting order to sort opened dataset by these fields on the client side
without refetching data from server.

UpdateMode
Determines how MySQL finds records when updating to an SQL database.

UpdateObject
Specifies the update object component used to update a read-only result set.

In TMySQLQuery

DataSource
Specifies the data source component from which to extract current field values to use with
same-name parameters in the query SQL statement.

Handle
Specifies the cursor handle for the query.

ParamCheck
Specifies whether the parameter list for a query is regenerated if the SQL property changes at
runtime.

ParamCount
Indicates the current number of parameters for the query.

Params
Contains the parameters for a query SQL statement.

Prepared
Determines whether or not a query is prepared for execution.

ProcessComments
Allows to choose what kind of comments to cut from SQL query text before sending it to server.

RequestLive

TMySQLQuery 190

© 1999-2021, Microolap Technologies

Specifies whether an application expects to receive a live result set when the query executes.

RowsAffected
Returns the number of rows operated upon by the latest query execution.

SQL
Contains the text of the SQL statement to execute for the query.

SQLBinary
Points to the binary data stream that represents an SQL query statement or result set.

Text
Points to the actual text of the SQL query passed to MySQL.

UniDirectional
Determines whether or not bidirectional cursors are enabled for a query's result set.

10.1.1. DataSource

Specifies the data source component from which to extract current field values to use with same-
name parameters in the query's SQL statement.

Syntax:

property DataSource: TDataSource;

Description:

Set DataSource to automatically fill parameters in a query with fields values from another dataset.
Parameters that have the same name as fields in the other dataset are filled with the field values.
Parameters with names that are not the same as fields in the other dataset do not automatically get
values, and must be programmatically set.

For example, if the SQL property of the TMySQLQuery contains the SQL statement below and the
dataset referenced through DataSource has a CustNo field, the value from the current record in that
other dataset is used in the CustNo parameter.

SELECT * FROM Orders O WHERE (O.CustNo = :CustNo)

DataSource must point to a TDataSource component linked to another dataset component; it cannot
point to this query's data source component.

The dataset specified in DataSource must be created, populated, and opened before attempting to
bind parameters. Parameters are bound by calling the query's Prepare method prior to executing the
query.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference191

© 1999-2021, Microolap Technologies

 DataSource is especially of use when creating a master-detail relationship between
tables using a linked query. It is also of use to guarantee binding for parameters that are not
already set in the Params property or through a call to the ParamByName method.

If the SQL statement used by a query does not contain parameters, or all parameters are
bound by the application using the Params property or the ParamByName method,
DataSource need not be assigned. The example below shows setting the DataSource
property of Query2 to the data source for Query1, preparing Query2, and activating Query2.

with MySQLQuery2 do
begin
 DataSource := DataSource1;
 Prepare;
 Open;
end;

If the SQL statement in the TMySQLQuery is a SELECT query, the query is executed using the new
field values each time the record pointer in the other dataset is changed. It is not necessary to call
the Open method of the TMySQLQuery each time. This makes using the DataSource property to
dynamically filter a query result set useful for establishing Master-Detail relationships. Set the
DataSource property in the Detail query to the TDataSource component for the Master dataset.

If the SQL statement uses other than a SELECT query (such as INSERT or UPDATE), the parameters
with the same name as fields in the other dataset still get values, but the query must be explicitly
executed each time the other dataset's record pointer moves. For example, the SQL statement below
uses the INSERT statement and has the parameters Custno and CompanyName.

INSERT INTO Customer (CustNo, Company)
 VALUES (:CustNo, :CompanyName)

Another dataset, Query1 and DataSource1, has a CustNo field but no CompanyName field. If this
dataset is used through the DataSource property, the CompanyName parameter must be
programmatically assigned a value. Because Query1 has a CustNo field and Query1 is referenced
through the DataSource property, the CustNo parameter automatically receives a value.

with MySQLQuery2 do
begin
 DataSource := DataSource1;
 ParamByName('CompanyName').AsString := Edit1.Text;
 Prepare;
 ExecSQL;
end;

If the SQL statement contains parameters with the same name as fields in the other dataset, do not
manually set values for these parameters. Any values programmatically set, such as by using the
Params property or the ParamByName method, will be overridden with automatic values. Parameters
of other names must be programmatically given values. These parameters are unaffected by setting
DataSource.

TMySQLQuery 192

© 1999-2021, Microolap Technologies

DataSource can be set at runtime or at design-time using the Object Inspector. At design-time,
select the desired TDataSource from the drop-down list or type in the name.

10.1.2. Handle

Specifies the cursor handle for the query.

Syntax:

type HDBICur: Longint;
property Handle: HDBICur;

Description:

Use Handle only to bypass TMySQLQuery methods and call directly into the MySQL. Many MySQL
function calls require a cursor handle parameter. Handle is assigned an initial value when a query is
executed. If used with a call that changes the current record position, call Resync immediately after
returning from the MySQL call.

10.1.3. ParamCheck

Specifies whether the parameter list for a query is regenerated if the SQL property changes at
runtime.

property ParamCheck: Boolean;

Description:

Set ParamCheck to specify whether or not the Params property is cleared and regenerated if an
application modifies the query's SQL property at runtime. By default ParamCheck is True, meaning
that the Params property is automatically regenerated at runtime. When ParamCheck is True, the
proper number of parameters is guaranteed to be generated for the current SQL statement.

This property is useful for data definition language (DDL) statements that contain parameters as part
of the DDL statement and that are not parameters for the TMySQLQuery. Set ParamCheck to False
to prevent these parameters from being mistaken for parameters of the TMySQLQuery executing the
DDL statement.

An application that does not use parameterized queries may choose to set ParamCheck to False, but
otherwise ParamCheck should be True.

10.1.4. ParamCount

Indicates the current number of parameters for the query.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference193

© 1999-2021, Microolap Technologies

Syntax:

property ParamCount: Word;

Description:

Inspect ParamCount to determine how many parameters are in the Params property. If the
ParamCheck property is True, ParamCount always corresponds to the number of actual parameters
in the SQL statement for the query.

See also: Example: ParamCount, DataType, StrToIntDef, AsXXX

10.1.5. Params

Contains the parameters for a query's SQL statement.

Syntax:

property Params[Index: Word]TParams;

Description:

Access Params at runtime to view and set parameter names, values, and data types dynamically (at
design time use the collection editor for the Params property to set parameter information). Params
is a zero-based array of TParams parameter records. Index specifies the array element to access.

 An easier way to set and retrieve parameter values when the name of each parameter is
known is to call ParamByName. ParamByName cannot, however, be used to change a
parameter's data type or name.

Parameters used in SELECT statements cannot be NULL, but they can be NULL for UPDATE and INSERT
statements.

Example:

The following code runs an insert query to add a record for Lichtenstein into the country table.

MySQLQuery2.SQL.Clear;
MySQLQuery2.SQL.Add('INSERT INTO COUNTRY (NAME, CAPITAL, POPULATION)');
MySQLQuery2.SQL.Add('VALUES (:Name, :Capital, :Population)');
MySQLQuery2.Params[0].AsString := 'Lichtenstein';
MySQLQuery2.Params[1].AsString := 'Vaduz';

TMySQLQuery 194

© 1999-2021, Microolap Technologies

MySQLQuery2.Params[2].AsInteger := 420000;
MySQLQuery2.ExecSQL;

10.1.6. Prepared

Determines whether or not a query is prepared for execution.

Syntax:

property Prepared: Boolean;

Description:

Examine Prepared to determine if a query is already prepared for execution. If Prepared is True, the
query is prepared, and if Prepared is False, the query is not prepared. While a query need not be
prepared before execution, execution performance is enhanced if the query is prepared beforehand,
particularly if it is a parameterized query that is executed more than once using the same parameter
values.

 An application can change the current setting of Prepared to prepare or unprepare a
query. If Prepared is True, setting it to False calls the Unprepare method to unprepare the
query. If Prepared is False, setting it to True calls the Prepare method to prepare the query.
Generally, however, it is better programming practice to call Prepare and Unprepare
directly. These methods automatically update the Prepared property.

10.1.7. ProcessComments

Allows to choose what kind of comments to cut from SQL query text before sending it to server.

Syntax:

property ProcessComments : TMySQLQueryProcessComments;

Description:

This property is a set values that determine what kinds of comments will be deleted from SQL query
text before sending it to MySQL server. The following table describes possible comments styles:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference195

© 1999-2021, Microolap Technologies

TMySQLQueryProcessComm
ents value

Processed by
default

Comments style

qpcMinusMinus yes All symbols from '--' until end of string are
truncated.

qpcSharp no All symbols from '#' until end of string are
truncated.

qpcSlashAsterisk yes C-style comments are truncated. For example '/*
this is comment */'

You can set ProcessComments to [] (empty set) to allow MySQL server to process all kind of
comments by itself. But this can cause problems if you are using query params (Params, ParamCheck,
ParamCount properties).

 This property can be very useful if your literal constants contains '--', '#', '/*' or '*/'
symbols. Just set to remove appropriate value of TMySQLQueryProcessComments from
ProcessComments property.

See also: Params property, ParamCheck property, ParamCount property

10.1.8. RequestLive

Specifies whether an application expects to receive a live result set when the query executes.

Syntax:

property RequestLive: Boolean;

Description:

Set RequestLive to specify whether or not the query should attempt to return a live result set to the
application. RequestLive is False by default, meaning that a query always returns a read-only result
set.

Set RequestLive to True to request a live result set. Setting RequestLive to True does not guarantee
that a live result set is returned. MySQL returns a live result set only if the SELECT syntax of the query
conforms to the syntax requirements for a live result set.

TMySQLQuery 196

© 1999-2021, Microolap Technologies

If RequestLive is True, but the syntax does not conform to the requirements, MySQL returns an error
code for remote servers.

TMySQLQuery can't be "live" if meets one (or more) of following conditions:

§ SQL query contains more than one tables in "from" section

§ SQL query has JOINs

§ SQL query doesn't use tables at all:

SELECT VERSION

§ SQL query has some calculations or function calls in fields definitions:

SELECT field_name + 1 FROM table_name

§ SQL query doesn't contain at least one unique indexed field.

After activation of the TMySQLQuery you should inspect the CanModify property to determine if the
request for a live resultset succeeded.

 All multi-table queries return read-only result sets.

 Your query will not be updatable if it is multi-resultset query. This means that you will not
able to edit dataset if AvailableResultsetCount property is not equal to 1.

See also: TMySQLDataset.CanModify and AvailableResultsetCount properties

10.1.9. RowsAffected

Returns the number of rows operated upon by the latest query execution.

Syntax:

property RowsAffected: Integer;

Description:

Inspect RowsAffected to determine how many rows were updated or deleted by the last query
operation. If no rows were updated or deleted, RowsAffected has a value of zero. RowsAffected will
have a value of -1 if the execution of the SQL statement could not be executed due to an error
condition. This latter situation would typically follow the raising of an exception.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference197

© 1999-2021, Microolap Technologies

10.1.10. SQL

Contains the text of the SQL statement to execute for the query.

Syntax:

property SQL: TStrings;

Description:

Use SQL to provide the SQL statement that a query component executes when its ExecSQL or Open
method is called. At design time the SQL property can be edited by invoking the String List editor in
the Object Inspector.

The SQL property may contain only one complete SQL statement at a time. In general, multiple
"batch" statements are not allowed unless a particular server supports them.

The SQL statement in the SQL property may contain replaceable parameters, following standard SQL-
92 syntax conventions. Parameters are created and stored in the Params property.

 Please read this FAQ section if you want to use Unicode strings in your application: How to
use Unicode data in my application?

See also: Example: SQL, ExecSQL

10.1.11. SQLBinary

Points to the binary data stream that represents an SQL query statement or result set.

Syntax:

property SQLBinary: PChar;

Description:

Do not access SQLBinary. It is an internal binary data stream used by the query component. To
access or set the SQL statement that this query component executes, use the SQL property. To access
or set the parameters used in a parameterized SQL statement, use the Params property.

10.1.12. Text

Points to the actual text of the SQL query passed to MySQL.

TMySQLQuery 198

© 1999-2021, Microolap Technologies

Syntax:

property Text: PChar;

Description:

Text is a read-only property that can be examined to determine the actual contents of SQL statement
passed to MySQL. For parameterized queries, Text contains the SQL statement with parameters
replaced by the parameter substitution symbol (?) in place of actual parameter values.

In general there should be no need to examine the Text property. To access or change the SQL
statement for the query, use the SQL property. To examine or modify parameters, use the Params
property.

10.1.13. UniDirectional

Determines whether or not bidirectional cursors are enabled for a query's result set.

Syntax:

property UniDirectional: Boolean;

Description:

Set UniDirectional to control whether or not a cursor can move forward and backward through a
result set. By default UniDirectional is False, enabling forward and backward navigation. This
property may be used for BDE compatibility.

10.2. Methods

Please see TMySQLQuery methods short descriptions below:

Derived from TDataSet

ActiveBuffer
Returns a pointer to the buffer for the active record.

Append
Adds a new, empty record to the end of the dataset.

AppendRecord
Adds a new, populated record to the end of the dataset and posts it to the database.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference199

© 1999-2021, Microolap Technologies

CheckBrowseMode
Automatically posts or cancels data changes when an application changes which record in the
dataset is the active record.

ClearFields
Clears the contents of all fields for the active record.

Close
Closes a dataset.

ControlsDisabled
Indicates whether data-aware controls do not update their display to reflect changes to the
dataset.

CursorPosChanged
Marks the internal cursor position as invalid.

Delete
Deletes the active record and positions the cursor on the next record.

DisableControls
Disables data display in data-aware controls associated with the dataset.

Edit
Enables editing of data in the dataset.

EnableControls
Re-enables data display in data-aware controls associated with the dataset.

FieldByName
Finds a field based on its name.

FindField
Searches for a specified field in the dataset.

FindFirst
Implements a virtual method for positioning the cursor on the first record in a filtered dataset.

FindLast
Implements a virtual method for positioning the cursor on the last record in a filtered dataset.

FindNext
Implements a virtual method for positioning the cursor on the next record in a filtered dataset.

FindPrior
Implements a virtual method for positioning the cursor on the previous record in a filtered
dataset.

First
Positions the cursor on the first record in the dataset.

FreeBookmark
Frees the resources allocated for a specified bookmark.

TMySQLQuery 200

© 1999-2021, Microolap Technologies

GetBookmark
Allocates a bookmark for the current cursor position in the dataset.

GetDetailDataSets
Fills a list with a dataset for every detail dataset that is not the value of a nested dataset field.

GetFieldList
Retrieves a specified set of field objects into a list.

GetFieldNames
Retrieves a list of names for all fields in a dataset.

GotoBookmark
Implements a virtual method to position the cursor on the record pointed to by a specified
bookmark.

Insert
Inserts a new, empty record in the dataset.

InsertRecord
Inserts a new, populated record to the dataset and posts it to the database.

IsEmpty
Indicates whether the dataset contains no records.

IsLinkedTo
Indicates whether a dataset is linked to a specified data source.

Last
Positions the cursor on the last record in the dataset.

MoveBy
Positions the cursor on a record relative to the active record in the dataset.

Next
Positions the cursor on the next record in the dataset.

Open
Opens the dataset.

Prior
Positions the cursor on the previous record in the dataset.

Refresh
Refetches data from the database to update a dataset's view of data.

Resync
Refetches the active record and the records that precede and follow it.

SetFields
Sets the values for all fields in a record.

UpdateCursorPos
Positions the cursor on the active record.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference201

© 1999-2021, Microolap Technologies

UpdateRecord
Ensures that data-aware controls and detail datasets reflect record updates.

Derived from TMySQLDataSet

ApplyUpdates
Writes a dataset's pending cached updates to the database.

BookmarkValid
Tests the validity of a specified bookmark.

Cancel
Cancels modifications to the current record if those changes are not yet posted.

CancelUpdates
Clears all pending cached updates from the cache and restores the dataset its prior state.

CheckOpen
Checks the result of a call to the MySQL.

CloseDatabase
Closes a database connection associated with the database.

CommitUpdates
Clears the cached updates buffer.

CompareBookmarks
Indicates the relationship between two bookmarks.

FetchAll
Retrieves all records from the current cursor position to the end of the file and stores them
locally.

FlushBuffers
Posts all changes that have been written to the record buffer.

GetBlobFieldData
Reads BLOB data into a buffer.

GetCurrentRecord
Retrieves the current record into a buffer.

GetFieldData
Retrieves the current value of a field into a buffer.

GetIndexInfo
Retrieves information about the current index into the index data fields of the dataset.

GetLastInsertID
Returns the ID generated for an AUTO_INCREMENT column by the previous query.

Locate

TMySQLQuery 202

© 1999-2021, Microolap Technologies

Searches the dataset for a specified record and makes that record the current record.

Lookup
Retrieves field values from a record that matches specified search values.

OpenDatabase
Opens the database that contains the dataset.

Post
Writes a modified record to the database.

Prepare
Sends a query for optimization prior to execution.

UnPrepare
Frees the resources allocated for a previously prepared query.

RevertRecord
Restores the current record in the dataset to an unmodified state when cached updates are
enabled.

SortBy
Sorts opened dataset on client side without refetching data from server.

Translate
Converts a data string between the ANSI character set used by Delphi (and Windows), and the
local code page (OEM character set).

UpdateStatus
Reports the update status for the current record.

In TMySQLQuery

Create
Creates an instance of a query component.

Destroy
Destroys the instance of a query.

ExecSQL
Executes the SQL statement for the query.

GetDetailLinkFields
Fills lists with the master and detail fields of the link.

ParamByName
Accesses parameter information based on a specified parameter name.

10.2.1. Create

Creates an instance of a query component.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference203

© 1999-2021, Microolap Technologies

Syntax:

constructor Create(AOwner: TComponent);

Description:

Call Create to instantiate a query at runtime. Query components placed in forms or data modules at
design time are created automatically.

Create calls its inherited Create constructor, creates an empty SQL statement list, an empty
parameter list, sets the OnChange event handler for the SQL statement list, establishes a data link,
sets the RequestLive property to False, sets the ParamCheck property to True, and sets the
RowsAffected property to -1.

10.2.2. Destroy

Destroys the instance of a query.

Syntax:

destructor Destroy;

Description:

Do not call Destroy directly. Instead, call Free, which checks that the TMySQLQuery is not nil before
calling Destroy.

Destroy disconnects from the server, frees the SQL statement list, the parameter list, and the data
link and SQL binary storage area, and then calls its inherited destructor.

10.2.3. ExecSQL

Executes the SQL statement for the query.

Syntax:

procedure ExecSQL;

Description:

TMySQLQuery 204

© 1999-2021, Microolap Technologies

Call ExecSQL to execute the SQL statement currently assigned to the SQL property. Use ExecSQL to
execute queries that do not return a cursor to data (such as INSERT, UPDATE, DELETE, and CREATE
TABLE).

 For SELECT statements, call Open instead of ExecSQL.

ExecSQL prepares the statement in SQL property for execution if it has not already been prepared. To
speed performance, an application should ordinarily call Prepare before calling ExecSQL for the first
time.

See also: Example: SQL, ExecSQL

10.2.4. GetDetailLinkFields

Fills lists with the master and detail fields of the link.

Syntax:

procedure GetDetailLinkFields(
 MasterFields,
 DetailFields: TList);
 override;

Description:

Creates two lists of TFields from the master-detail relationship between two tables; one containing
the master fields, and the other containing the detail fields.

10.2.5. ParamByName

Accesses parameter information based on a specified parameter name.

Syntax:

function ParamByName(const Value: String): TParam;

Description:

Call ParamByName to set or use parameter information for a specific parameter based on its name.
Value is the name of the parameter for which to retrieve information.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference205

© 1999-2021, Microolap Technologies

ParamByName is primarily used to set an parameter's value at runtime. For example, the following
statement retrieves the current value of a parameter called "Contact" into an edit box:

Edit1.Text := MySQLQuery1.ParamByName('Contact').AsString;

Parameters used in SELECT statements cannot be NULL, but they can be NULL for UPDATE and INSERT
statements.

10.3. Events

Please see TMySQLQuery events short descriptions below:

Derived from TDataSet

AfterCancel
Occurs after an application completes a request to cancel modifications to the active record.

AfterClose
Occurs after an application closes a dataset.

AfterDelete
Occurs after an application deletes a record.

AfterEdit
Occurs after an application starts editing a record.

AfterInsert
Occurs after an application inserts a new record.

AfterOpen
Occurs after an application completes opening a dataset and before any data access occurs.

AfterPost
Occurs after an application writes the active record to the database or cache returns to browse
state.

AfterRefresh
Occurs after an application refreshes the data in the dataset.

AfterScroll
Occurs after an application scrolls from one record to another.

BeforeCancel
Occurs before an application executes a request to cancel changes to the active record.

BeforeClose
Occurs before an application executes a request to close the dataset.

BeforeDelete
Occurs before an application attempts to delete the active record.

TMySQLQuery 206

© 1999-2021, Microolap Technologies

BeforeEdit
Occurs before an application enters edit mode for the active record.

BeforeInsert
Occurs before an application enters insert mode.

BeforeOpen
Occurs before an application executes a request to open a dataset.

BeforePost
Occurs before an application posts changes for the active record to the database or cache.

BeforeRefresh
Occurs immediately before an application refreshes the data in the dataset.

BeforeScroll
Occurs before an application scrolls from one record to another.

OnCalcFields
Occurs when an application recalculates calculated fields.

OnDeleteError
Occurs when an application attempts to delete a record and an exception is raised.

OnEditError
Occurs when an application attempts to modify or insert a record and an exception is raised.

OnFilterRecord
Occurs each time a different record in the dataset becomes the active record and filtering is
enabled.

OnNewRecord
Occurs when an application inserts or appends a new dataset record.

OnPostError
Occurs when an application attempts to modify or insert a record and an exception is raised.

Derived from TMySQLDataSet

OnUpdateError
Occurs if an exception is generated when cached updates are applied to a database.

OnDeleting
Occurs after all checks before data deleting are passed but before an application deletes this
record from the database. This event allows to cancel record deleting.

OnInserting
Occurs after all checks before data insert are passed but before an application posts changes
for this new record to the database. This event allows to cancel record insertion.

OnPosting

Microolap DAC for MySQL, v.3.3.2, Programmer's reference207

© 1999-2021, Microolap Technologies

Occurs after all checks before post are passed but before an application posts changes for the
active record to the database. This event allows to cancel data modification.

In TMySQLQuery

TMySQLQuery has no own events.

11. TMySQLStoredProc

 Since v2.5.0

 TMySQLStoredProc provides full support for MySQL 5.0+ stored procedures.

Description:

TMySQLStoredProc allows to execute stored procedures in MySQL database. It supports IN, OUT and
INOUT parameters.

TMySQLStoredProc is TDataSet descendant. So you can use it for store resultset fetched in stored
procedure. TMySQLStoredProc also allows to execute stored procedures without storing resultset
(for example, procedures with INSERT, UPDATE or DELETE statements).

 You should use 'root' user account to be able to work with all stored procedures. If you're
using other user account, then DAC for MySQL will fetch parameters of stored procedures
created by this user only.

See also: Properties, Methods, Events

11.1. Properties

Please see TMySQLStoredProc properties short descriptions below:

Derived from TDataSet

Active
Specifies whether or not a dataset is open.

AutoCalcFields
Determines when the OnCalcFields event is triggered.

Bof
Indicates whether or not a cursor is positioned at the first record in a dataset.

TMySQLStoredProc 208

© 1999-2021, Microolap Technologies

Bookmark
Specifies the current bookmark in the dataset.

CachedUpdates
Does not affect on dataset behavior.

DefaultFields
Indicates whether a dataset's underlying field components are generated dynamically when the
dataset is opened.

Eof
Indicates whether or not a cursor is positioned at the last record in a dataset.

FieldCount
Indicates the number of field components associated with the dataset.

FieldDefList
Points to the list of field definitions for the dataset.

FieldList
Lists the field components of a dataset.

Fields
Lists all non-aggregate field components of the dataset.

FieldValues
Provides access to the values for all fields in the active record for the dataset.

Found
Indicates whether or not moving to a different record is successful.

Modified
Indicates whether the active record is modified.

Name
Designates the name of the dataset as referenced by other components.

ObjectView
Specifies whether fields are to be stored hierarchically or flattened out in the Fields property.

SparseArrays
Determines whether a unique TField object is created for each element of an array field.

State
Indicates the current operating mode of the dataset.

Derived from TMySQLDataSet

AllowSequenced
Determines that database records can be located by sequence numbers.

AutoRefresh

Microolap DAC for MySQL, v.3.3.2, Programmer's reference209

© 1999-2021, Microolap Technologies

Specifies whether server-generated field values are refetched automatically.

AvailableResultsetCount
Indicates count of resultsets available to fetch from multiresultset query or stored procedure.
This property is useful when query or stored procedure returns more than one dataset.

BlockReadSize
Determines how many record buffers are read in each block.

CacheBlobs
Determines whether BLOB fields are cached in memory.

Database
Specifies the database component for which this dataset represents one or more tables.

Filter
Specifies the text of the current filter for a dataset.

Filtered
Specifies whether filtering is active for a dataset.

FilterOptions
Specifies whether filtering is case insensitive, and whether or not partial comparisons are
permitted when filtering records.

KeySize
Specifies the size of the key for the current index of the dataset.

LastInsertID
Get last inserted value of AUTO_INCREMENT column from MySQL server

RecNo
Indicates the current record in the dataset.

RecordCount
Indicates the total number of records associated with the dataset.

RecordSize
Indicates the size of a record in the dataset.

SortFieldNames
Specifies field names and sorting order to sort opened dataset by these fields on the client side
without refetching data from server.

UpdateMode
Determines how MySQL finds records when updating to an SQL database.

UpdateObject
Specifies the update object component used to update a read-only result set.

In TMySQLStoredProc

MultiResultsetNo

TMySQLStoredProc 210

© 1999-2021, Microolap Technologies

Specifies the resultset to associate with component when it become active. This property is
useful when query or stored procedure returns more than one dataset.

Params
Parameters of stored procedure.

ParamsCount
Number of parameters in Params list.

ProcedureName
Name of stored procedure.

RoutineType
Specifies which kind of routine must be used.

11.1.1. Params

Parameters of stored procedure.

Syntax:

property Params : TMySQLSPParams;

Description:

Use Params property to access stored procedure parameters list. This list is being filled right after
ProcedureName property change. If you need to reload parameters list from server in design time just
remove all current parameters from list and close editor. When you open editor next time parameters
list is refilled.

See also: ParamsCount, ProcedureName

11.1.2. ParamsCount

Number of parameters in Params list.

Syntax:

property ParamsCount : integer;

See also: Params

11.1.3. ProcedureName

Name of stored procedure.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference211

© 1999-2021, Microolap Technologies

Syntax:

property ProcedureName: string;

Description:

ProcedureName property is used to set up name of stored procedure for execute, right after its value
changes Params property is filled with stored procedure parameters list.

See also: Params

11.1.4. RoutineType

Specifies which kind of routine must be used.

Syntax:

properties RoutineType: TMySQLRoutineType;

 TMySQLRoutineType = (rtProcedure, rtFunction);

Description:

RoutineType property is used to specify which kind of routine must be used. It can be a stored
procedures or a functions. This determines the syntax for routine call. Depending on RoutineType the
ProcedureName property is changing and shows only available routines.

11.2. Methods

Please see TMySQLStoredProc methods short descriptions below:

Derived from TDataSet

ActiveBuffer
Returns a pointer to the buffer for the active record.

Append
Adds a new, empty record to the end of the dataset.

AppendRecord
Adds a new, populated record to the end of the dataset and posts it to the database.

TMySQLStoredProc 212

© 1999-2021, Microolap Technologies

CheckBrowseMode
Automatically posts or cancels data changes when an application changes which record in the
dataset is the active record.

ClearFields
Clears the contents of all fields for the active record.

Close
Closes a dataset.

ControlsDisabled
Indicates whether data-aware controls do not update their display to reflect changes to the
dataset.

CursorPosChanged
Marks the internal cursor position as invalid.

Delete
Deletes the active record and positions the cursor on the next record.

DisableControls
Disables data display in data-aware controls associated with the dataset.

Edit
Enables editing of data in the dataset.

EnableControls
Re-enables data display in data-aware controls associated with the dataset.

FieldByName
Finds a field based on its name.

FindField
Searches for a specified field in the dataset.

FindFirst
Implements a virtual method for positioning the cursor on the first record in a filtered dataset.

FindLast
Implements a virtual method for positioning the cursor on the last record in a filtered dataset.

FindNext
Implements a virtual method for positioning the cursor on the next record in a filtered dataset.

FindPrior
Implements a virtual method for positioning the cursor on the previous record in a filtered
dataset.

First
Positions the cursor on the first record in the dataset.

FreeBookmark
Frees the resources allocated for a specified bookmark.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference213

© 1999-2021, Microolap Technologies

GetBookmark
Allocates a bookmark for the current cursor position in the dataset.

GetDetailDataSets
Fills a list with a dataset for every detail dataset that is not the value of a nested dataset field.

GetFieldList
Retrieves a specified set of field objects into a list.

GetFieldNames
Retrieves a list of names for all fields in a dataset.

GotoBookmark
Implements a virtual method to position the cursor on the record pointed to by a specified
bookmark.

Insert
Inserts a new, empty record in the dataset.

InsertRecord
Inserts a new, populated record to the dataset and posts it to the database.

IsEmpty
Indicates whether the dataset contains no records.

IsLinkedTo
Indicates whether a dataset is linked to a specified data source.

Last
Positions the cursor on the last record in the dataset.

MoveBy
Positions the cursor on a record relative to the active record in the dataset.

Next
Positions the cursor on the next record in the dataset.

Open
Opens the dataset.

Prior
Positions the cursor on the previous record in the dataset.

Refresh
Refetches data from the database to update a dataset's view of data.

Resync
Refetches the active record and the records that precede and follow it.

SetFields
Sets the values for all fields in a record.

UpdateCursorPos
Positions the cursor on the active record.

TMySQLStoredProc 214

© 1999-2021, Microolap Technologies

UpdateRecord
Ensures that data-aware controls and detail datasets reflect record updates.

Derived from TMySQLDataSet

ApplyUpdates
Writes a dataset's pending cached updates to the database.

BookmarkValid
Tests the validity of a specified bookmark.

Cancel
Cancels modifications to the current record if those changes are not yet posted.

CancelUpdates
Clears all pending cached updates from the cache and restores the dataset its prior state.

CheckOpen
Checks the result of a call to the MySQL.

CloseDatabase
Closes a database connection associated with the database.

CommitUpdates
Clears the cached updates buffer.

CompareBookmarks
Indicates the relationship between two bookmarks.

FetchAll
Retrieves all records from the current cursor position to the end of the file and stores them
locally.

FlushBuffers
Posts all changes that have been written to the record buffer.

GetBlobFieldData
Reads BLOB data into a buffer.

GetCurrentRecord
Retrieves the current record into a buffer.

GetFieldData
Retrieves the current value of a field into a buffer.

GetIndexInfo
Retrieves information about the current index into the index data fields of the dataset.

GetLastInsertID
Returns the ID generated for an AUTO_INCREMENT column by the previous query.

Locate

Microolap DAC for MySQL, v.3.3.2, Programmer's reference215

© 1999-2021, Microolap Technologies

Searches the dataset for a specified record and makes that record the current record.

Lookup
Retrieves field values from a record that matches specified search values.

OpenDatabase
Opens the database that contains the dataset.

Post
Writes a modified record to the database.

RevertRecord
Restores the current record in the dataset to an unmodified state when cached updates are
enabled.

SortBy
Sorts opened dataset on client side without refetching data from server.

Translate
Converts a data string between the ANSI character set used by Delphi (and Windows), and the
local code page (OEM character set).

UpdateStatus
Reports the update status for the current record.

In TMySQLStoredProc

ExecProc
Executes stored procedure without storing resultset.

ParamByName
Accesses parameter information based on a specified parameter name.

RefreshParams
Rebuilds parameters list.

SetNeedRefreshParams
Sets internal flag to refetch parameters info from server by force on the next time
RefreshParams call.

11.2.1. ExecProc

Executes stored routine without storing resultset.

Syntax:

procedure ExecProc;

Description:

TMySQLStoredProc 216

© 1999-2021, Microolap Technologies

ExecProc method is used to execute stored routine without storing a resultset. This can be useful
when routine does not return a resultset, or when a resultset from the routine is not required for
further processing. ExecProc just executes CALL procedure_name(params) or SELECT
function_name(params) statement filled with the parameters from Params property.

 If you need to store resultset from routine please use Open method or set Active property
to True.

See also: TMySQLStoredProc.Params, TMySQLDataSet.Open, TMySQLDataSet.Active

11.2.2. ParamByName

Accesses parameter information based on a specified parameter name.

Syntax:

function ParamByName(const Value: String): TParam;

Description:

Call ParamByName to return parameter information for a specific parameter based on its name.
Value is the name of the parameter for which to retrieve information. Typically ParamByName is
used to set an input parameter's value at runtime.

Example:

The following command line assigns the value "Jane Smith" as the value for the parameter named
Contact:

StoredProc1.ParamByName('Contact').AsString := 'Jane Smith';

See also: TMySQLStoredProc.Params

11.2.3. RefreshParams

Rebuilds parameters list.

Syntax:

function RefreshParams;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference217

© 1999-2021, Microolap Technologies

Description:

RefreshParams is called mostly internally. When RefreshParams is called first time parameters are
cached locally. To force RefreshParams refetch data directly from server call SetNeedRefreshParams
first.

See also: TMySQLStoredProc.SetNeedRefreshParams

11.2.4. SetNeedRefreshParams

Sets internal flag to refetch parameters info from server by force on the next time RefreshParams call.

Syntax:

function RefreshParams;

Description:

To force RefreshParams refetch data directly from server call SetNeedRefreshParams first.

Example:

StoredProc1.SetNeedRefreshParams;
StoredProc1.RefreshParams;
StoredProc1.ParamByName('Contact').AsString := 'Jane Smith';

See also: TMySQLStoredProc.RefreshParams

11.3. Events

Please see TMySQLStoredProc events short descriptions below:

Derived from TDataSet

AfterCancel
Occurs after an application completes a request to cancel modifications to the active record.

AfterClose
Occurs after an application closes a dataset.

AfterDelete
Occurs after an application deletes a record.

TMySQLStoredProc 218

© 1999-2021, Microolap Technologies

AfterEdit
Occurs after an application starts editing a record.

AfterInsert
Occurs after an application inserts a new record.

AfterOpen
Occurs after an application completes opening a dataset and before any data access occurs.

AfterPost
Occurs after an application writes the active record to the database or cache returns to browse
state.

AfterRefresh
Occurs after an application refreshes the data in the dataset.

AfterScroll
Occurs after an application scrolls from one record to another.

BeforeCancel
Occurs before an application executes a request to cancel changes to the active record.

BeforeClose
Occurs before an application executes a request to close the dataset.

BeforeDelete
Occurs before an application attempts to delete the active record.

BeforeEdit
Occurs before an application enters edit mode for the active record.

BeforeInsert
Occurs before an application enters insert mode.

BeforeOpen
Occurs before an application executes a request to open a dataset.

BeforePost
Occurs before an application posts changes for the active record to the database or cache.

BeforeRefresh
Occurs immediately before an application refreshes the data in the dataset.

BeforeScroll
Occurs before an application scrolls from one record to another.

OnCalcFields
Occurs when an application recalculates calculated fields.

OnDeleteError
Occurs when an application attempts to delete a record and an exception is raised.

OnEditError
Occurs when an application attempts to modify or insert a record and an exception is raised.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference219

© 1999-2021, Microolap Technologies

OnFilterRecord
Occurs each time a different record in the dataset becomes the active record and filtering is
enabled.

OnNewRecord
Occurs when an application inserts or appends a new dataset record.

OnPostError
Occurs when an application attempts to modify or insert a record and an exception is raised.

Derived from TMySQLDataSet

OnUpdateError
Occurs if an exception is generated when cached updates are applied to a database.

OnDeleting
Occurs after all checks before data deleting are passed but before an application deletes this
record from the database. This event allows to cancel record deleting.

OnInserting
Occurs after all checks before data insert are passed but before an application posts changes
for this new record to the database. This event allows to cancel record insertion.

OnPosting
Occurs after all checks before post are passed but before an application posts changes for the
active record to the database. This event allows to cancel data modification.

In TMySQLStoredProc

TMySQLStoredProc has no own events.

12. TMySQLTable

 TMySQLTable encapsulates a database table.

Description:

Use TMySQLTable to access data in a single database table. TMySQLTable provides direct access to
every record and field in an underlying database table. TMySQLTable can also work with a subset of
records within a database table using ranges and filters.

At design time, create, delete, update, or rename the database table connected to a TMySQLTable by
right-clicking on the TMySQLTable and using the pop-up menu.

TMySQLTable 220

© 1999-2021, Microolap Technologies

See also: Properties, Methods, Events

12.1. Properties

Please see TMySQLTable properties short descriptions below:

Derived from TDataSet

Active
Specifies whether or not a dataset is open.

AutoCalcFields
Determines when the OnCalcFields event is triggered.

Bof
Indicates whether or not a cursor is positioned at the first record in a dataset.

Bookmark
Specifies the current bookmark in the dataset.

CachedUpdates
Does not affect on dataset behavior.

DefaultFields
Indicates whether a dataset's underlying field components are generated dynamically when the
dataset is opened.

Eof
Indicates whether or not a cursor is positioned at the last record in a dataset.

FieldCount
Indicates the number of field components associated with the dataset.

FieldDefList
Points to the list of field definitions for the dataset.

FieldList
Lists the field components of a dataset.

Fields
Lists all non-aggregate field components of the dataset.

FieldValues
Provides access to the values for all fields in the active record for the dataset.

Found
Indicates whether or not moving to a different record is successful.

Modified
Indicates whether the active record is modified.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference221

© 1999-2021, Microolap Technologies

Name
Designates the name of the dataset as referenced by other components.

ObjectView
Specifies whether fields are to be stored hierarchically or flattened out in the Fields property.

SparseArrays
Determines whether a unique TField object is created for each element of an array field.

State
Indicates the current operating mode of the dataset.

Derived from TMySQLDataSet

AllowSequenced
Determines that database records can be located by sequence numbers.

AutoRefresh
Specifies whether server-generated field values are refetched automatically.

AvailableResultsetCount
Indicates count of resultsets available to fetch from multiresultset query or stored procedure.
This property is useful when query or stored procedure returns more than one dataset.

BlockReadSize
Determines how many record buffers are read in each block.

CacheBlobs
Determines whether BLOB fields are cached in memory.

Database
Specifies the database component for which this dataset represents one or more tables.

Filter
Specifies the text of the current filter for a dataset.

Filtered
Specifies whether filtering is active for a dataset.

FilterOptions
Specifies whether filtering is case insensitive, and whether or not partial comparisons are
permitted when filtering records.

KeySize
Specifies the size of the key for the current index of the dataset.

LastInsertID
Get last inserted value of AUTO_INCREMENT column from MySQL server.

RecNo
Indicates the current record in the dataset.

TMySQLTable 222

© 1999-2021, Microolap Technologies

RecordCount
Indicates the total number of records associated with the dataset.

RecordSize
Indicates the size of a record in the dataset.

SortFieldNames
Specifies field names and sorting order to sort opened dataset by these fields on the client side
without refetching data from server.

UpdateMode
Determines how MySQL finds records when updating to an SQL database.

UpdateObject
Specifies the update object component used to update a read-only result set.

In TMySQLTable

BatchModify
Insert, update or delete records without refetching data from database after every operation.

CanModify
Indicates whether an application can insert, edit, and delete data in a table.

DataSource
Provides read-only access to the data source for the master dataset when this table is the detail
of a master/detail relationship.

DefaultIndex
Specifies if the data in the table should be ordered on a default index when opened.

Exists
Indicates whether the underlying database table exists.

FieldDefs
Points to the list of field definitions for the dataset.

Handle
Specifies the cursor handle for the dataset.

IndexDefs
Contains information about the indexes for a table.

IndexFieldCount
Indicates the number of fields that comprise the current key.

IndexFieldNames
Lists the columns to use as an index for a table.

IndexFields
Lists the fields of the current index.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference223

© 1999-2021, Microolap Technologies

IndexName
Identifies a secondary index for the table.

KeyExclusive
Specifies how the upper and lower boundaries for a range should be interpreted.

KeyFieldCount
Specifies the number of fields to use when conducting a partial key search on a multi-field key.

Limit
Specifies the number of rows need to be fetched from table.

MasterFields
Specifies one or more fields in a master table to link with corresponding fields in this table in
order to establish a master-detail relationship between the tables.

MasterSource
Specifies the name of the data source for a dataset to use as a master table in establishing a
detail-master relationship between this table and another one.

Offset
Specifies the row number from which data to be fetched from table.

ReadOnly
Specifies whether a table is read-only for this application.

ReopenOnIndexChange
Enables or disables client-side dataset sorting after switching to another index.

StoreDefs
Indicates whether the table's field and index definitions persist with the data module or form.

TableName
Indicates the name of the database table that this component encapsulates.

12.1.1. BatchModify

Insert, update or delete records without refetching data from database after every operation.

Syntax:

property BatchModify: Boolean;

Description:

If you want implement batch Insert, Delete or Update operations, we suggest you to use
BatchModify property.

TMySQLTable 224

© 1999-2021, Microolap Technologies

This property allows you increase operation speed. When you set BatchModify to True, DAC for
MySQL doesn't fetch data from database after each Insert or Update operations.

 Use TMySQLQuery for batch Insert, Update or Delete operations.

Example:

procedure TForm1.Button1Click(Sender: TObject);
var
 I : Integer;
begin
 MySQLTable1.BatchModify := True;
 MySQLTable1.DisableControls;
 for I := 1 to 1000 do
 begin
 MySQLTable1.Insert;
 MySQLTable1.FieldByName('ID').AsInteger := I;
 MySQLTable1.FieldByName('Name').AsString := 'name'+IntToStr(I);
 MySQLTable1.Post;
 end;
 MySQLTable1.BatchModify := False;
 MySQLTable1.EnableControls;
end;

12.1.2. CanModify

Indicates whether an application can insert, edit, and delete data in a table.

Syntax:

property CanModify: Boolean;

Description:

Check the status of CanModify to determine if an application can modify a dataset in any way. If
CanModify is True, the dataset can be modified. If CanModify is False, the table is read-only.

CanModify is set automatically when an application opens a table. If the ReadOnly property of a
table component is True, then CanModify is set to False.

CanModify can also be False because:

§ Another application currently has exclusive write access to the table.

§ The table is read-only by database design.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference225

© 1999-2021, Microolap Technologies

 Even if CanModify is True, it is not a guarantee that a user will be able to insert or update
records in a table. Other factors may come in to play, for example, SQL access privileges.

12.1.3. DataSource

Provides read-only access to the data source for the master dataset when this table is the detail of a
master/detail relationship.

Syntax:

property DataSource: TDataSource;

Description:

DataSource is a read-only version of the MasterSource property.

12.1.4. DefaultIndex

Specifies if the data in the table should be ordered on a default index when opened.

Syntax:

property DefaultIndex: Boolean;

Description:

When DefaultIndex is True, MySQL attempts to order the data based on the primary key or a unique
index when opening the table. DefaultIndex default set is True.

12.1.5. Exists

Indicates whether the underlying database table exists.

Syntax:

property Exists: Boolean;

Description:

TMySQLTable 226

© 1999-2021, Microolap Technologies

Read Exists at runtime to determine whether a database table exists. If the table does not exist,
create a table from the field definitions and index definitions using the CreateTable method. This
property is read-only.

Example:

The following example shows how to create a table.

// Don't overwrite an existing table
if not MySQLTable1.Exists then
 begin
 with MySQLTable1 do begin
// The Table component must not be active
 Active := False;
// First, describe the type of table and give
// it a name
 DatabaseName := 'DBDEMOS';
 TableName := 'CustInfo';
// Describe the fields in the table
 with FieldDefs do begin
 Clear;
 with AddFieldDef do begin
 Name := 'Field1';
 DataType := ftInteger;
 Required := True;
 end;
 with AddFieldDef do begin
 Name := 'Field2';
 DataType := ftString;
 Size := 30;
 end;
 end;
// Describe any indexes
 with IndexDefs do begin
 Clear;
 with AddIndexDef do begin
 Name := '';
 Fields := 'Field1';
 Options := [ixPrimary];
 end;
 with AddIndexDef do begin
 Name := 'Fld2Indx';
 Fields := 'Field2';
 Options := [ixCaseInsensitive];
 end;
 end;
// Call the CreateTable method to create the table
 CreateTable;
 end;
end;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference227

© 1999-2021, Microolap Technologies

12.1.6. FieldDefs

Points to the list of field definitions for the dataset.

Syntax:

property FieldDefs: TFieldDefs;

Description:

FieldDefs lists the field definitions for a dataset. While an application can examine FieldDefs to
explore the field definitions for a dataset, it should not change these definitions unless creating a
new table with CreateTable or CreateDataSet.

To access fields and field values in a dataset, use the Fields, AggFields, and FieldValues properties,
and the FieldsByName method.

 If the dataset includes object field descendants, FieldDefs represents a hierarchical view
of the data, meaning that the definitions include object field definitions. To determine the
definitions in a flattened view, use FieldDefList instead.

12.1.7. Handle

Specifies the cursor handle for the dataset.

Syntax:

type HDBICur: Longint;
property Handle: HDBICur;

Description:

Use Handle only to bypass TMySQLTable methods and call directly into the MySQL. Many function
calls require a cursor handle parameter. Handle is assigned an initial value when a dataset is
opened. If used with a call that changes the current record position, call Resync immediately after
returning from the call.

12.1.8. IndexDefs

Contains information about the indexes for a table.

property IndexDefs: TIndexDefs;

TMySQLTable 228

© 1999-2021, Microolap Technologies

Description:

IndexDefs is a collection of index definitions, each of which describes an available index for the
table. Define the index definitions of a table before calling CreateTable or creating a table at design
time.

Ordinarily, an application accesses or specifies indexes at runtime through the IndexFieldNames or
IndexFields properties.

If IndexDefs is updated or manually edited, the StoreDefs property becomes True.

 The index definitions in IndexDefs may not always reflect the current indexes available for
a table. Before examining IndexDefs, call its Update method to refresh the list.

See also: Example: IndexDefs,Update,Count,Items,IndexName,Fields,Name

12.1.9. IndexFieldCount

Indicates the number of fields that comprise the current key.

Syntax:

property IndexFieldCount: Integer;

Description:

Examine IndexFieldCount to determine the number of fields that comprise the current index. For
indexes based on a single column, IndexFieldCount returns 1. For multi-column indexes,
IndexFieldCount indicates the number of fields upon which the index is based.

See also: Example: IndexFields,IndexFieldCount

12.1.10. IndexFieldNames

Lists the columns to use as an index for a table.

Syntax:

property IndexFieldNames: String;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference229

© 1999-2021, Microolap Technologies

Description:

Use IndexFieldNames as an alternative method of specifying the index to use for a table. In
IndexFieldNames, specify the name of each column to use as an index for a table. Ordering of
column names is significant. Separate names with semicolon.

 The IndexFieldNames and IndexName properties are mutually exclusive. Setting one
clears the other.

 You can control whether to sort data on client-side or on server-side by using
ReopenOnIndexChange property.

See also: IndexName, ReopenOnIndexChange properties

12.1.11. IndexFields

Lists the fields of the current index.

Syntax:

property IndexFields: [Index: Integer]: TField;

Description:

IndexFields is a zero-based array of field objects, each of which corresponds to a field in the current
index. Index is an ordinal value indicating the position of a field in the index. The first field in the
index is IndexFields[0], the second is IndexFields[1], and so on.

 Do not set IndexFields directly. Instead use the IndexFieldNames property to order
datasets on the fly at runtime.

See also: Example: IndexFields,IndexFieldCount

12.1.12. IndexName

Identifies a secondary index for the table.

Syntax:

property IndexName: String;

TMySQLTable 230

© 1999-2021, Microolap Technologies

Description:

Use IndexName to specify an alternative index for a table. If IndexName is empty, a table's sort
order is based on its default index.

If IndexName contains a valid index name, then that index determines the sort order of records.

 IndexFieldNames and IndexName are mutually exclusive. Setting one clears the other.

This example uses the IndexName property to sort the records in a table on the CustNo and OrderNo
fields.

MySQLTable1.Active := False;
// Get the current available indexes
MySQLTable1.IndexDefs.Update;
// Find one which combines customer number ('CustNo') and
// order number ('OrderNo')
for I := 0 to MySQLTable1.IndexDefs.Count - 1 do
 if MySQLTable1.IndexDefs.Items[I].Fields = 'CustNo;OrderNo' then
// Set that index as the current index for the table
 MySQLTable1.IndexName := MySQLTable1.IndexDefs.Items[I].Name;
MySQLTable1.Active := True;

 You can control whether to sort data on client-side or on server-side by using
ReopenOnIndexChange property.

See also: IndexFieldNames, ReopenOnIndexChange properties

12.1.13. KeyExclusive

Specifies how the upper and lower boundaries for a range should be interpreted.

Syntax:

property KeyExclusive: Boolean;

Description:

Use KeyExclusive to specify whether a range includes or excludes the records that match the starting
and ending values of the range. By default, KeyExclusive is False meaning that matching values are
included.

To restrict a range to those records that are greater than the specified starting value and less than
the specified ending value, set KeyExclusive to True.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference231

© 1999-2021, Microolap Technologies

Example:

// Limit the range from 1351 to 1356,
// including 1351 but excluding 1356
with MySQLTable1 do
begin
// Set the beginning key
 EditRangeStart;
 IndexFields[0].AsString := '1351';
// Include 1351 in the range.
// Note that KeyExclusive applys to the range start
// because of the call to EditRangeStart
 KeyExclusive := False;
// Set the ending key
 EditRangeEnd;
 IndexFields[0].AsString := '1356';
// Exclude 1356 from the range
// Note that KeyExclusive now applys to the range end
// because of the call to EditRangeEnd
 KeyExclusive := True;
// Tell the table to establish the range
 ApplyRange;
end;

12.1.14. KeyFieldCount

Specifies the number of fields to use when conducting a partial key search on a multi-field key.

Syntax:

property KeyFieldCount: Integer;
Description:

Description:

Use KeyFieldCount to limit a search based on a multi-field key to a consecutive sub-set of those
fields. For example, if the primary key for a dataset consists of three-fields, a partial-key search can
be conducted using only the first field in the key by setting KeyFieldCount to 1. If KeyFieldCount is 0,
the dataset searches on all fields in the key.

 Searches are only conducted based on consecutive key fields beginning with the first field
in the key. For example if a key consists of three fields, an application can set
KeyFieldCount to 1 to search on the first field, 2 to search on the first and second fields, or
3 to search on all fields. By default KeyFieldCount is initially set to include all fields in a
search.

TMySQLTable 232

© 1999-2021, Microolap Technologies

12.1.15. Limit

Specifies the number of rows need to be fetched from table.

Syntax:

property Limit: Integer default -1;

Description:

If Limit > -1 SQL Query is prepared for fetching not more than Limit rows (including 0).

12.1.16. MasterFields

Specifies one or more fields in a master table to link with corresponding fields in this table in order to
establish a master-detail relationship between the tables.

Syntax:

property MasterFields: String;

Description:

Use MasterFields after setting the MasterSource property to specify the names of one or more fields
to use in establishing a detail-master relationship between this table and the one specified in
MasterSource.

MasterFields is a string containing one or more field names in the master table. Separate field names
with semicolons.

Each time the current record in the master table changes, the new values in those fields are used to
select corresponding records in this table for display.

 At design time, use the Field Link designer to establish the master-detail relationship
between two tables.

See also: Example: MasterSource, MasterFields

12.1.17. MasterSource

Specifies the name of the data source for a dataset to use as a master table in establishing a detail-
master relationship between this table and another one.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference233

© 1999-2021, Microolap Technologies

Syntax:

property MasterSource: TDataSource;

Description:

Use MasterSource to specify the name of the data source component whose DataSet property
identifies a dataset to use as a master table in establishing a detail-master relationship between this
table and another one.

 At design time choose an available data source from the MasterSource property's drop-
down list in the Object Inspector.

After setting the MasterSource property, specify which fields to use in the master table by setting
the MasterFields property. At runtime each time the current record in the master table changes, the
new values in those fields are used to select corresponding records in this table for display.

 At design time, use the Field Link designer to establish the master-detail relationship
between two tables.

Example:

Suppose you have a master table named Customer that contains a CustNo field, and you also have a
detail table named Orders that also has a CustNo field. To display only those records in Orders that
have the same CustNo value as the current record in Customer, write this code:

Orders.MasterSource := 'CustSource';
Orders.MasterFields := 'CustNo';

If you want to display only the records in the detail table that match more than one field value in the
master table, specify each field and separate them with a semicolon.

Orders.MasterFields := 'CustNo;SaleDate';

See also: Example: MasterSource, MasterFields

12.1.18. Offset

Specifies the row number from which data to be fetched from table.

Syntax:

TMySQLTable 234

© 1999-2021, Microolap Technologies

property Offset: Integer default 0;

Description:

Query is prepared for fetching not more than Limit rows (including 0). Rows from table are fetched
starting from Offset row.

Example:

Limit := 100;
Offset := 100;

Query is prepared for fetching 100 rows starting with row number 100.

 Setting Offset is meaningless without setting Limit property either. Default Limit value -1
will produce syntax error in other case.

12.1.19. ReadOnly

Specifies whether a table is read-only for this application.

Syntax:

property ReadOnly: Boolean;

Description:

Use the ReadOnly property to prevent users from updating, inserting, or deleting data in the table. By
default, ReadOnly is False, meaning users can potentially alter a table's data.

 Even if ReadOnly is False, users may not be able to modify or add data to a table. Other
factors, such as insufficient SQL privileges for the application or its current user may prevent
successful alterations.

To guarantee that users cannot modify or add data to a table:

§ Set the Active property to False.

§ Set ReadOnly to True.

When ReadOnly is True, the table's CanModify property is False.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference235

© 1999-2021, Microolap Technologies

12.1.20. ReopenOnIndexChange

 Since v2.7.2

Enables or disables client-side dataset sorting after switching to another index.

Syntax:

property ReopenOnIndexChange: Boolean default True;

Description:

You can switch dataset to another index by using IndexName or IndexFieldNames properties.
ReopenOnIndexChange property value controls whether dataset will be re-fetched from server or
just resorted locally.

ReopenOnIndexChange
property value

TMySQLTable behavior

True (default behavior) Dataset is closed and whole resultset is re-queried from server
again sorted according to selected index. This method is slower
but you'll have fresh resultset with all changes on server side
included. Sorting performed on server side respecting current
character set and collation.

False Dataset is not closed and current data is just re-ordered
according to selected index using client-side sorting. This
method is usually faster then first since there is no need to query
data from server each time index is switched. This is the same
action as calling SortBy method providing field names index is
built on. But your data will be not updated with latest server-side
changes. This is the same data fetched when opening dataset, it
is just resorted in other order.

See also: IndexName, IndexFieldNames properties, SortBy method

12.1.21. StoreDefs

Indicates whether the table's field and index definitions persist with the data module or form.

Syntax:

TMySQLTable 236

© 1999-2021, Microolap Technologies

property StoreDefs: Boolean;

Description:

If StoreDefs is True, the table's index and field definitions are stored with the data module or form.
Setting StoreDefs to True makes the CreateTable method into a one-step procedure that creates
fields, indexes, and validity checks at runtime.

StoreDefs is False by default. It becomes True whenever FieldDefs or IndexDefs is updated or edited
manually; to prevent edited (or imported) definitions from being stored, reset StoreDefs to False.

12.1.22. TableName

Indicates the name of the database table that this component encapsulates.

Syntax:

property TableName: TFileName;

Description:

Use TableName to specify the name of the database table this component encapsulates. To set
TableName to a meaningful value, the Database property should already be set. If Database is set at
design time, then select a valid table name from the TableName drop-down list in the Object
Inspector.

 To set TableName, the Active property must be False.

12.2. Methods

Please see TMySQLTable methods short descriptions below:

Derived from TDataSet

ActiveBuffer
Returns a pointer to the buffer for the active record.

Append
Adds a new, empty record to the end of the dataset.

AppendRecord
Adds a new, populated record to the end of the dataset and posts it to the database.

CheckBrowseMode

Microolap DAC for MySQL, v.3.3.2, Programmer's reference237

© 1999-2021, Microolap Technologies

Automatically posts or cancels data changes when an application changes which record in the
dataset is the active record.

ClearFields
Clears the contents of all fields for the active record.

Close
Closes a dataset.

ControlsDisabled
Indicates whether data-aware controls do not update their display to reflect changes to the
dataset.

CursorPosChanged
Marks the internal cursor position as invalid.

Delete
Deletes the active record and positions the cursor on the next record.

DisableControls
Disables data display in data-aware controls associated with the dataset.

Edit
Enables editing of data in the dataset.

EnableControls
Re-enables data display in data-aware controls associated with the dataset.

FieldByName
Finds a field based on its name.

FindField
Searches for a specified field in the dataset.

FindFirst
Implements a virtual method for positioning the cursor on the first record in a filtered dataset.

FindLast
Implements a virtual method for positioning the cursor on the last record in a filtered dataset.

FindNext
Implements a virtual method for positioning the cursor on the next record in a filtered dataset.

FindPrior
Implements a virtual method for positioning the cursor on the previous record in a filtered
dataset.

First
Positions the cursor on the first record in the dataset.

FreeBookmark
Frees the resources allocated for a specified bookmark.

GetBookmark

TMySQLTable 238

© 1999-2021, Microolap Technologies

Allocates a bookmark for the current cursor position in the dataset.

GetDetailDataSets
Fills a list with a dataset for every detail dataset that is not the value of a nested dataset field.

GetFieldList
Retrieves a specified set of field objects into a list.

GetFieldNames
Retrieves a list of names for all fields in a dataset.

GotoBookmark
Implements a virtual method to position the cursor on the record pointed to by a specified
bookmark.

Insert
Inserts a new, empty record in the dataset.

InsertRecord
Inserts a new, populated record to the dataset and posts it to the database.

IsEmpty
Indicates whether the dataset contains no records.

IsLinkedTo
Indicates whether a dataset is linked to a specified data source.

Last
Positions the cursor on the last record in the dataset.

MoveBy
Positions the cursor on a record relative to the active record in the dataset.

Next
Positions the cursor on the next record in the dataset.

Open
Opens the dataset.

Prior
Positions the cursor on the previous record in the dataset.

Refresh
Refetches data from the database to update a dataset's view of data.

Resync
Refetches the active record and the records that precede and follow it.

SetFields
Sets the values for all fields in a record.

UpdateCursorPos
Positions the cursor on the active record.

UpdateRecord

Microolap DAC for MySQL, v.3.3.2, Programmer's reference239

© 1999-2021, Microolap Technologies

Ensures that data-aware controls and detail datasets reflect record updates.

Derived from TMySQLDataSet

ApplyUpdates
Writes a dataset's pending cached updates to the database.

BookmarkValid
Tests the validity of a specified bookmark.

Cancel
Cancels modifications to the current record if those changes are not yet posted.

CancelUpdates
Clears all pending cached updates from the cache and restores the dataset its prior state.

CheckOpen
Checks the result of a call to the MySQL.

CloseDatabase
Closes a database connection associated with the database.

CommitUpdates
Clears the cached updates buffer.

CompareBookmarks
Indicates the relationship between two bookmarks.

FetchAll
Retrieves all records from the current cursor position to the end of the file and stores them
locally.

FlushBuffers
Posts all changes that have been written to the record buffer.

GetBlobFieldData
Reads BLOB data into a buffer.

GetCurrentRecord
Retrieves the current record into a buffer.

GetFieldData
Retrieves the current value of a field into a buffer.

GetIndexInfo
Retrieves information about the current index into the index data fields of the dataset.

GetLastInsertID
Returns the ID generated for an AUTO_INCREMENT column by the previous query.

Locate
Searches the dataset for a specified record and makes that record the current record.

TMySQLTable 240

© 1999-2021, Microolap Technologies

Lookup
Retrieves field values from a record that matches specified search values.

OpenDatabase
Opens the database that contains the dataset.

Post
Writes a modified record to the database.

RevertRecord
Restores the current record in the dataset to an unmodified state when cached updates are
enabled.

SortBy
Sorts opened dataset on client side without refetching data from server.

Translate
Converts a data string between the ANSI character set used by Delphi (and Windows), and the
local code page (OEM character set).

UpdateStatus
Reports the update status for the current record.

InTMySQLTable

AddIndex
Creates a new index for the table.

ApplyRange
Applies a range to the dataset.

CancelRange
Removes any ranges currently in effect for the table.

Create
Creates an instance of a table component.

CreateBlobStream
Returns a TMySQLBlobStream object for reading or writing the data in a specified blob field.

CreateTable
Builds a new table using new structure information.

DeleteIndex
Deletes a secondary index for the table.

Destroy
Destroys the instance of a component.

EditKey
Enables modification of the search key buffer.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference241

© 1999-2021, Microolap Technologies

EditRangeEnd
Enables changing the ending value for an existing range.

EditRangeStart
Enables changing the starting value for an existing range.

EmptyTable
Deletes all records from the table.

FindKey
Searches for a record containing specified field values.

FindNearest
Moves the cursor to the record that most closely matches a specified set of key values.

GetDetailLinkFields
Lists the field components that link this dataset as a detail of a master dataset.

GetIndexNames
Retrieves a list of available indexes for a table.

GetTableEngine
Return a table Engine type as string.

GotoCurrent
Synchronizes the current record for this table with the current record of a specified table
component.

GotoKey
Moves the cursor to a record specified by the current key.

GotoNearest
Moves the cursor to the record that most closely matches the current key.

IsSequenced
Indicates whether the underlying database table uses record numbers to indicate the order of
records.

LockTable
Locks a table.

RenameTable
Renames the table associated with this table component.

SetKey
Enables setting of keys and ranges for a dataset prior to a search.

SetRange
Sets the starting and ending values of a range, and applies it.

SetRangeEnd
Indicates that subsequent assignments to field values specify the end of the range of rows to
include in the dataset.

TMySQLTable 242

© 1999-2021, Microolap Technologies

SetRangeStart
Indicates that subsequent assignments to field values specify the start of the range of rows to
include in the dataset.

UnlockTable
Removes a previously applied lock on a table.

12.2.1. AddIndex

Creates a new index for the table.

Syntax:

procedure AddIndex(const Name,
 Fields: String;
 Options: TIndexOptions,
 const DescFields: String='');

Description:

Call AddIndex to create a new index for the already-existing table associated with a dataset
component. The index created with this procedure is added to the database table underlying the
dataset component.

Name is the name of the new index. Name must contain an index name that is valid for MySQL.

Fields is a String value containing the field or fields on which the new index will be based. If more
than one field is used, separate the field names in the list with semi-colons.

Options is a set of attributes for the index. The Options parameter may contain any one, multiple, or
none of the TIndexOptions constants: ixPrimary, xUnique, ixDescending, ixCaseInsensitive, and
ixExpression.

DescFields is a string containing a list of field names, separated by semi-colons. The fields specified
in DescFields are the fields in the new index for which the ordering will be descending. Fields in the
index definition but not in the DescFields list use the default ascending ordering. It is possible that a
single index can have fields using both ascending and descending ordering.

MySQLTable1.AddIndex('MostPaid',
 'CustNo;SaleDate;AmountPaid',
 [ixCaseInsensitive],
 'SaleDate;AmountPaid');

Example:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference243

© 1999-2021, Microolap Technologies

In the example below, the AddIndex method is used to create an index named NewIndex. This index
is based on two fields from the associated table, CustNo and CustName. The index NewIndex
incorporates two index options through the TIndexOptions constants ixUnique and ixCaseInsensitive.

MySQLTable1.AddIndex('NewIndex',
 'CustNo;CustName',
 [ixUnique, ixCaseInsensitive]);

 Attempting to create an index using options that are not applicable to the table type
causes AddIndex to raise an exception.

12.2.2. ApplyRange

Applies a range to the dataset.

Syntax:

procedure ApplyRange;

Description:

Call ApplyRange to cause a range established with SetRangeStart and SetRangeEnd, or
EditRangeStart and EditRangeEnd, to take effect. When a range is in effect, only those records that
fall within the range are available to the application for viewing and editing.

See also: SetRangeStart, SetRangeEnd, EditRangeStart, EditRangeEnd, SetRange methods,
EditRangeStart, EditRangeEnd, FieldByName, ApplyRange example

12.2.3. CancelRange

Removes any ranges currently in effect for the table.

Syntax:

procedure CancelRange;

Description:

Call CancelRange to remove a range currently applied to a table. Canceling a range re-enables access
to all records in the dataset.

TMySQLTable 244

© 1999-2021, Microolap Technologies

See also: Example: SetRange, CancelRange, Refresh

12.2.4. Create

Creates an instance of a table component.

Syntax:

constructor Create(AOwner: TComponent);

Description:

Call Create to instantiate a table declared in an application if it was not placed on a form or data
module at design time. Create calls its inherited constructor, creates an empty index definitions list,
creates an empty data link, and creates an empty list of index files.

12.2.5. CreateBlobStream

Returns a TMySQLBlobStream object for reading or writing the data in a specified blob field.

Syntax:

function CreateBlobStream(Field: TField; Mode: TBlobStreamMode): TStream;
override;

Description:

Call CreateBlobStream to obtain a stream for reading data from or writing data to a binary large
object (BLOB) field. The Field parameter must specify a TBlobField component from the Fields
property array.

The Mode parameter specifies whether the stream will be used for reading, writing, or updating the
contents of the field.

Blob streams are created in a specific mode for a specific field on a specific record. Applications
should create a new blob stream every time the record in the dataset changes rather than reusing an
existing blob stream.

See also: Example: Create, CreateBlobStream, Edit, CopyFrom

Microolap DAC for MySQL, v.3.3.2, Programmer's reference245

© 1999-2021, Microolap Technologies

12.2.6. CreateTable

Builds a new table using new structure information.

Syntax:

procedure CreateTable;

Description:

Call CreateTable at runtime to create a table using this dataset's current definitions. If the table
already exists, CreateTable overwrites the table's structure and data. To avoid overwriting an existing
table, check the Exists property before calling CreateTable.

If the FieldDefs property contains values, these values are used to create field definitions. Otherwise
the Fields property is used. One or both of these properties must contain values in order to create a
database table.

If the IndexDefs property contain values, these values are used to create indexes on the table.

See also: Exists, FieldDefs, IndexDefs properties, CreateTable usage example

12.2.7. DeleteIndex

Deletes a secondary index for the table.

Syntax:

procedure DeleteIndex(const Name: String);

Description:

Call DeleteIndex to remove a secondary index for a table. Name is the name of the index to delete.
DeleteIndex cannot remove a primary index.

 To delete an index, an application must first open the table and then lock it.

12.2.8. Destroy

Destroys the instance of a component.

Syntax:

TMySQLTable 246

© 1999-2021, Microolap Technologies

destructor Destroy;

Description:

Do not call Destroy directly. Instead, call Free, which verifies that the table is not nil before calling
Destroy. Destroy frees the index files list for the table, frees its data link, frees its index definitions,
and then calls its inherited destructor.

12.2.9. EditKey

Enables modification of the search key buffer.

Syntax:

procedure EditKey;

Description:

Call EditKey to put the dataset in dsSetKey state while preserving the current contents of the current
search key buffer. To determine current search keys, you can use the IndexFields property to iterate
over the fields used by the current index.

EditKey is especially useful when performing multiple searches where only one or two field values
among many change between each search.

See also: Example: EditKey, GotoKey

12.2.10. EditRangeEnd

Enables changing the ending value for an existing range.

Syntax:

procedure EditRangeEnd;

Description:

Call EditRangeEnd to change the ending value for an existing range. To specify an end range value,
call FieldByName after calling EditRangeEnd. After assigning a new ending value, call ApplyRange
to activate the modified range.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference247

© 1999-2021, Microolap Technologies

See also: Example: EditRangeStart, EditRangeEnd, FieldByName, ApplyRange

12.2.11. EditRangeStart

Enables changing the starting value for an existing range.

Syntax:

procedure EditRangeStart;

Description:

Call EditRangeStart to change the starting value for an existing range. To specify a start range value,
call FieldByName after calling EditRangeStart. After assigning a new ending value, call ApplyRange
to activate the modified range.

See also: Example: EditRangeStart, EditRangeEnd, FieldByName, ApplyRange

12.2.12. EmptyTable

Deletes all records from the table.

Syntax:

procedure EmptyTable;

Description:

The EmptyTable method deletes all records from the database table specified by the DatabaseName
and TableName properties.

 Deletion of records can fail if the user lacks sufficient privileges to perform the delete
operation.

See also: Example: EmptyTable

12.2.13. FindKey

Searches for a record containing specified field values.

TMySQLTable 248

© 1999-2021, Microolap Technologies

Syntax:

function FindKey(
 const KeyValues: array of const): Boolean;

Description:

Call FindKey to search for a specific record in a dataset. KeyValues contains a comma-delimited
array of field values, called a key. Each value in the key can be a literal, a variable, a NULL, or nil. If
the number of values passed in KeyValues is less than the number of columns in the index used for
the search, the missing values are assumed to be NULL.

For MySQL tables, the key may correspond to a specified index in IndexName, or to a list of field
names in the TMySQLTable.IndexFieldNames property.

If the search is successful, FindKey positions the cursor on the matching record and returns True.
Otherwise the cursor is not moved, and FindKey returns False.

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

12.2.14. FindNearest

Moves the cursor to the record that most closely matches a specified set of key values.

Syntax:

procedure FindNearest(
 const KeyValues: array of const);

Description:

Call FindNearest to move the cursor to a specific record in a dataset or to the first record in the
dataset that is greater than the values specified in the KeyValues parameter. KeyValues contains a
comma-delimited array of field values, called a key. Each value in the key can be a literal, a variable,
a NULL, or nil. If the number of values passed in KeyValues is less than the number of columns in the
index used for the search, the missing values are assumed to be NULL.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference249

© 1999-2021, Microolap Technologies

For MySQL tables, the key may correspond to a specified index in TMySQLTable.IndexName, or to a
list of field names in the TMySQLTable.IndexFieldNames property.

FindNearest positions the cursor either on a record that exactly matches the search criteria, or on the
first record whose values are greater than those specified in the search criteria. KeyExclusive affects
the boundary conditions of ranges and will affect the record selected by FindNearest.

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

See also: Example: FindNearest

12.2.15. GetDetailLinkFields

Lists the field components that link this dataset as a detail of a master dataset.

Syntax:

procedure GetDetailLinkFields(MasterFields, DetailFields: TList);
override;

Description:

GetDetailLinkFields fills two lists of TFields that define a master-detail relationship between this
table and another (master) dataset. The MasterFields list is filled with fields from the master table
whose values must equal the values of the fields in the DetailFields list. The DetailFields list is filled
with fields from the calling dataset.

12.2.16. GetIndexNames

Retrieves a list of available indexes for a table.

Syntax:

procedure GetIndexNames(List: TStrings);

Description:

TMySQLTable 250

© 1999-2021, Microolap Technologies

Call GetIndexNames to retrieve a list of all available indexes for a table. List is a string list object,
created and maintained by the application, into which to retrieve the index names.

12.2.17. GetTableEngine

Return a table Engine type as string.

Syntax:

function GetTableEngine : String;

Description:

Call to GetTableEngine to obtain table Engine type.

12.2.18. GotoCurrent

Synchronizes the current record for this table with the current record of a specified table component.

Syntax:

procedure GotoCurrent(Table: TMySQLTable);

Description:

Call GotoCurrent to synchronize the cursor position for this table with the cursor position in another
dataset that uses a different data source component, but which is connected to the same underlying
database table. Table is the name of the table component whose cursor position to use for
synchronizing.

 This procedure works only for table components that have the same Database and
TableName properties. Otherwise, GotoCurrent raises an exception.

GotoCurrent is mainly for use in applications that have two table components that are linked to the
same underlying database table through different data source components. It enables an application
to ensure that separate views of the data appear to be linked.

12.2.19. GotoKey

Moves the cursor to a record specified by the current key.

Syntax:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference251

© 1999-2021, Microolap Technologies

function GotoKey: Boolean;

Description:

Use GotoKey to move to a record specified by key values assigned with previous calls to SetKey or
EditKey and actual search values indicated in the Fields property.

If GotoKey finds a matching record, it positions the cursor on the record and returns True. Otherwise
the current cursor position remains unchanged, and GotoKey returns False.

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

See also: Example: EditKey, GotoKey

12.2.20. GotoNearest

Moves the cursor to the record that most closely matches the current key.

Syntax:

procedure GotoNearest;

Description:

Call GotoNearest to position the cursor on the record that is either the exact record specified by the
current key values in the key buffer, or on the first record whose values exceed those specified.

 KeyExclusive determines which records are considered part of a search range.

Before calling GotoNearest, an application must specify key values by calling SetKey or EditKey to
put the dataset is dsSetKey state, and then use FieldByName to populate the key buffer property
with search values.

 If some field from multi-field index is not assigned with a value after EditKey call it will not
be used for search.

TMySQLTable 252

© 1999-2021, Microolap Technologies

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

See also: SetKey method, KeyExclusive property, SetKey,GotoNearest example

12.2.21. IsSequenced

Indicates whether the underlying database table uses record numbers to indicate the order of records.

Syntax:

function IsSequenced: Boolean;

Description:

Use IsSequenced to determine whether the underlying database table supports sequence numbers,
or whether these are computed by the dataset component. When IsSequenced returns True,
applications can safely use the RecNo property to navigate to records in the dataset.

12.2.22. LockTable

Locks a table.

Syntax:

procedure LockTable(LockType: TLockType);
type TLockType = (ltReadLock, ltWriteLock);

Description:

Call LockTable to lock a table to prevent other applications from placing a particular type of lock on
the table. LockType specifies the lock requested by this application.

Requesting a write lock prevents other application from writing to a table. Requesting a read lock
prevents other applications from reading a table and writing to it.

See also: UnlockTable method

Microolap DAC for MySQL, v.3.3.2, Programmer's reference253

© 1999-2021, Microolap Technologies

12.2.23. RenameTable

Renames the table associated with this table component.

Syntax:

procedure RenameTable(const NewTableName: String);

Description:

Call RenameTable to give a new name to the table underlying this table component. RenameTable
renames the table and any support files.

12.2.24. SetKey

Enables setting of keys and ranges for a dataset prior to a search.

Syntax:

procedure SetKey;

Description:

Call SetKey to put the dataset into dsSetKey state and clear the current contents of the key buffer.
The FieldByName method can then be used to supply a new set of search values prior to conducting
a search.

 To modify an existing key or range, call EditKey.

12.2.25. SetRange

Sets the starting and ending values of a range, and applies it.

Syntax:

procedure SetRange(
 const StartValues, EndValues: array of const);

Description:

TMySQLTable 254

© 1999-2021, Microolap Technologies

Call SetRange to specify a range and apply it to the dataset. StartValues indicates the field values
that designate the first record in the range. EndValues indicates the field values that designate the
last record in the range.

SetRange combines the functionality of SetRangeStart, SetRangeEnd, and ApplyRange in a single
procedure call. SetRange performs the following functions:

§ Puts the dataset into dsSetKey state.

§ Erases any previously specified starting range values and ending range values.

§ Sets the start and end range values.

§ Applies the range to the dataset.

If either StartValues or EndValues has fewer elements than the number of fields in the current index,
then the remaining entries are set to NULL.

 With MySQL, SetRange works with any columns specified in the IndexFieldNames
property.

See also: SetRangeStart, SetRangeEnd methods

12.2.26. SetRangeEnd

Indicates that subsequent assignments to field values specify the end of the range of rows to include
in the dataset.

Syntax:

procedure SetRangeEnd;

Description:

Call SetRangeEnd to put the dataset into dsSetKey state, erase any previous end range values, and
set them to NULL. Subsequent key buffer field assignments can be made using the FieldByName
method to set the ending values for a range.

After assigning end-range values to FieldValues, call ApplyRange to activate the modified range.

 With MySQL, TMySQLTable.SetRangeEnd works with any columns specified in the
IndexFieldNames property.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference255

© 1999-2021, Microolap Technologies

See also: SetRangeStart, SetRange methods

12.2.27. SetRangeStart

Indicates that subsequent assignments to field values specify the start of the range of rows to include
in the dataset.

Syntax:

procedure SetRangeStart;

Description:

Call SetRangeStart to put the dataset into dsSetKey state, erase any previous start range values, and
set them to NULL. Subsequent field assignments to the FieldValues property indicate the actual set of
starting values for a range.

After assigning start-range values to FieldValues, call ApplyRange to activate the modified range.

 With MySQL, TMySQLTable.SetRangeStart works with any columns specified in the
IndexFieldNames property.

See also: SetRange, SetRangeEnd methods

12.2.28. UnlockTable

Removes a previously applied lock on a table.

Syntax:

procedure UnlockTable(LockType: TLockType);

Description:

Call UnlockTable to remove a lock previously applied to a table. LockType specifies the lock to
remove.

Removing a read lock enables other applications to read a table. Removing a write lock enables other
application to write to a table.

TMySQLTable 256

© 1999-2021, Microolap Technologies

See also: LockTable method

12.3. Events

Please see TMySQLTable events short descriptions below:

Derived from TDataSet

AfterCancel
Occurs after an application completes a request to cancel modifications to the active record.

AfterClose
Occurs after an application closes a dataset.

AfterDelete
Occurs after an application deletes a record.

AfterEdit
Occurs after an application starts editing a record.

AfterInsert
Occurs after an application inserts a new record.

AfterOpen
Occurs after an application completes opening a dataset and before any data access occurs.

AfterPost
Occurs after an application writes the active record to the database or cache returns to browse
state.

AfterRefresh
Occurs after an application refreshes the data in the dataset.

AfterScroll
Occurs after an application scrolls from one record to another.

BeforeCancel
Occurs before an application executes a request to cancel changes to the active record.

BeforeClose
Occurs before an application executes a request to close the dataset.

BeforeDelete
Occurs before an application attempts to delete the active record.

BeforeEdit
Occurs before an application enters edit mode for the active record.

BeforeInsert
Occurs before an application enters insert mode.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference257

© 1999-2021, Microolap Technologies

BeforeOpen
Occurs before an application executes a request to open a dataset.

BeforePost
Occurs before an application posts changes for the active record to the database or cache.

BeforeRefresh
Occurs immediately before an application refreshes the data in the dataset.

BeforeScroll
Occurs before an application scrolls from one record to another.

OnCalcFields
Occurs when an application recalculates calculated fields.

OnDeleteError
Occurs when an application attempts to delete a record and an exception is raised.

OnEditError
Occurs when an application attempts to modify or insert a record and an exception is raised.

OnFilterRecord
Occurs each time a different record in the dataset becomes the active record and filtering is
enabled.

OnNewRecord
Occurs when an application inserts or appends a new dataset record.

OnPostError
Occurs when an application attempts to modify or insert a record and an exception is raised.

Derived from TMySQLDataSet

OnUpdateError
Occurs if an exception is generated when cached updates are applied to a database.

OnDeleting
Occurs after all checks before data deleting are passed but before an application deletes this
record from the database. This event allows to cancel record deleting.

OnInserting
Occurs after all checks before data insert are passed but before an application posts changes
for this new record to the database. This event allows to cancel record insertion.

OnPosting
Occurs after all checks before post are passed but before an application posts changes for the
active record to the database. This event allows to cancel data modification.

In TMySQLTable

TMySQLTable 258

© 1999-2021, Microolap Technologies

TMySQLTable has no own events

13. TMySQLTools

 TMySQLTools component allows to run MySQL diagnostic and repair operations such as Repair,
Check, Analyze, Optimize, Backup and Restore.

Please note that TMySQLTools component doesn't perform these operations itself: it just
executes maintenance queries on server side. Please find additional details at
http://dev.mysql.com/doc/refman/5.0/en/table-maintenance-sql.html

BACKUP TABLE and RESTORE TABLE queries are deprecated in current MySQL versions
(http://dev.mysql.com/doc/refman/5.0/en/backup-table.html).

We strongly recommend to use TMySQLDump component to backup your data, and
TMySQLBatchExecute component to restore SQL-dumps instead of using TMySQLTools component
for Backup and Restore operations.

See also: Properties, Methods, Events, TMySQLDump, TMySQLBatchExecute components

13.1. Properties

Please see TMySQLTools properties short descriptions below:

Database
Points to TMySQLDatabase component which sets a DB to be connected with.

Directory
Sets directory on server side for backup MySQL tables to.

TableList
Sets a list of DB tables to be dumped.

CheckOption
Sets MySQLOperation operation parameter.

MySQLOperation
Sets operation with which tables from TableList property you want to be processed.

RepairOption
Sets MySQL Repair command parameters.

13.1.1. CheckOption

Sets MySQLOperation operation parameter.

http://dev.mysql.com/doc/refman/5.0/en/table-maintenance-sql.html
http://dev.mysql.com/doc/refman/5.0/en/backup-table.html

Microolap DAC for MySQL, v.3.3.2, Programmer's reference259

© 1999-2021, Microolap Technologies

Syntax:

CheckOption : TCheckOption;
Type
TCheckOption = (coQuick,coFast,coMedium,coExtended,coChanged);

Description:

Default value is coQuick.

Possible parameters values:

coQuick
Don't scan the rows to check for wrong links;

coFast
Only check tables which haven't been closed properly;

coChanged
Only check tables which have been changed since last check or haven't been closed properly;

coMedium
Scan rows to verify that deleted links are okay. This also calculates a key checksum for the rows
and verifies this with a calculated checksum for the keys;

coExtended
Do a full key lookup for all keys for each row. This ensures that the table is 100% consistent, but
will take a long time!

13.1.2. Database

Points to TMySQLDatabase component which sets a DB to be connected with.

Syntax:

Database: TMySQLDatabase;

13.1.3. Directory

Sets directory on server side for backup MySQL tables to.

Syntax:

property Directory : string

TMySQLTools 260

© 1999-2021, Microolap Technologies

Description:

Use Directory to set path to directory on server side for backup tables from TableList to. Value of
Directory used with BACKUP TABLE MySQL statement:

BACKUP TABLE tbl_name [, tbl_name] ... TO '/path/to/backup/directory'

Example:

mySQLTools1.Directory := 'C:/backup/mysql';

See also: TableList

13.1.4. MySQLOperation

Sets operation with which tables from. TableList property you want to be processed.

Syntax:

MySQLOperation : TMySQLOperation;
Type
TMySQLOperation = (oOptimize, oCheck,oAnalyze,oRepair,oBackup,oRestore);

Description:

Default value is oCheck.

Possible parameters values:

oRepair
Repairs a possible corrupted table;

oCheck
Checks the table(s) for errors;

oRestore
Restores the table(s) from the backup that was made with BACKUP;

oOptimize
OPTIMIZE should be used if you have deleted a large part of a table or if you have made many
changes to a table with variable-length rows;

oAnalize
Analyse and store the key distribution for the table;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference261

© 1999-2021, Microolap Technologies

oBackup
Backups the table(s).

13.1.5. RepairOption

Sets MySQL Repair command parameters.

Syntax:

RepairOption : TRepairOption;
Type
TRepairOption = (roQuick,roExtended);

Description:

Sets MySQL Repair command parameters (roQuick by default). Possible parameters values:

roQuick
MySQL will try to do a REPAIR of only the index tree;

roExtended
MySQL will create the index row by row instead of creating one index at a time with sorting; this
may be better than sorting on fixed-length keys if you have long CHAR keys that compress very
well.

13.1.6. TableList

Sets a list of DB tables to be dumped.

Syntax:

TableList : TStrings;

Description:

Use TableList to set a list of DB tables to be processed with desired tool(s).

13.2. Methods

Please see TMySQLTools methods short descriptions below:

Execute
Executes the command which is set in MySQLOperation.

TMySQLTools 262

© 1999-2021, Microolap Technologies

13.2.1. Execute

Executes the command which is set in MySQLOperation.

Syntax:

Function Execute: Boolean;

13.3. Events

Please see TMySQLTools events short descriptions below:

OnError
Occurs on error while MySQL operation is executed by Execute

OnSuccess
Occurs on successful table processing completion.

13.3.1. OnError

Occurs on error while MySQL operation is executed by Execute

Syntax:

type TErrorEvent = procedure(TableName,ErrorMessage: String) of object;
OnError: TErrorEvent;

Description:

Create OnError event handler to get information about MySQL operation errors.

TableName
Contains the name of the table which was in processing when an error occurs;

ErrorMessage
Contains error message text.

13.3.2. OnSuccess

Occurs on successful table processing completion.

Syntax:

type TSuccessEvent = procedure(TableName,Status: String) of object;
OnSuccess : TSuccessEvent;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference263

© 1999-2021, Microolap Technologies

Description:

Create OnSuccess event handler to get information about successful table processing completion.

TableName
The name of the table just processed;

Status
Table processing completion status.

14. TMySQLUpdateSQL

 TMySQLUpdateSQL applies updates on behalf of queries or stored procedures that can't post
updates directly.

Description:

Use a TMySQLUpdateSQL object to provide SQL statements used to update read-only datasets
represented by TMySQLQuery component. A dataset is read-only either by design or circumstance. If
a dataset is read-only by design, the application itself does not provide a user interface for updating
data, but may institute a programmatic scheme behind the scenes. If a dataset is read-only by
circumstance, it indicates that the MySQL returned a read-only result set. This usually happens for
queries made against multiple tables. Such queries are, by SQL-92 definitions, read-only.

TMySQLUpdateSQL provides a mechanism for circumventing what some developers consider an SQL-
92 limitation. It enables a developer to provide INSERT, UPDATE, and DELETE statements for
performing separate update queries on otherwise read-only result sets in such a manner that the
separate update queries are transparent to the end user.

In practical application, a TMySQLUpdateSQL object is placed on a data module or form, and linked
to a TMySQLQuery component through that component's UpdateObject property. If the UpdateObject
property points to a valid TMySQLUpdateSQL object, the SQL statements belonging to the update
object are automatically applied when updates are applied.

 BLOB parameters (including MEMO fields, GRAPHIC fields etc.) support were added in the
version 2.6.2

See also: Properties, Methods

14.1. Properties

Please see TMySQLUpdateSQL properties short descriptions below:

TMySQLUpdateSQL 264

© 1999-2021, Microolap Technologies

DataSet
Identifies the dataset to which a TMySQLUpdateSQL component belongs.

DeleteSQL
Specifies the SQL DELETE statement to use when applying a cached deletion of a record.

InsertSQL
Specifies the SQL INSERT statement to use when applying a cached insertion of a record.

ModifySQL
Specifies the SQL UPDATE statement to use when applying an update to a record and cached
updates is enabled.

Query
Returns the query object used to perform a specified kind of update.

RefreshRecordSQL
Specifies an SQL statement to use to refresh a single record.

SQL
Returns a specified SQL statement used when applying cached updates.

14.1.1. DataSet

Identifies the dataset to which a TMySQLUpdateSQL component belongs.

Syntax:

property DataSet: TMySQLDataSet;

Description:

At design time, setting the dataset object's UpdateObject property automatically sets the DataSet
property of the specified TMySQLUpdateSQL object. An application should only need to set this
property if it creates a new update component at run time.

14.1.2. DeleteSQL

Specifies the SQL DELETE statement to use when applying a cached deletion of a record.

Syntax:

property DeleteSQL: TStrings;

Description:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference265

© 1999-2021, Microolap Technologies

Set DeleteSQL to the SQL DELETE statement to use when applying a deletion to a record. Statements
can be parameterized queries. To create a DELETE statement at design time, use the UpdateSQL
editor to create statements, such as:

DELETE FROM "Country" WHERE Name = :OLD_Name

At run time, an application can write a statement directly to this property to set or change the DELETE
statement.

 As the example illustrates, DeleteSQL supports an extension to normal parameter binding.
To retrieve the value of a field as it exists prior to application of cached updates, the field
name with 'OLD_'. This is especially useful when doing field comparisons in the WHERE
clause of the statement.

14.1.3. InsertSQL

Specifies the SQL INSERT statement to use when applying a cached insertion of a record.

Syntax:

property InsertSQL: TStrings;

Description:

Set InsertSQL to the SQL INSERT statement to use when applying an insertion to a dataset.
Statements can be parameterized queries. To create a INSERT statement at design time, use the
UpdateSQL editor to create statements, such as:

INSERT INTO "Country" (Name, Capital, Continent)
 VALUES (:Name, :Capital, :Continent)
 WHERE :OLD_Name = "Rangoon"

At run time, an application can write a statement directly to this property to set or change the INSERT
statement.

 As the example illustrates, InsertSQL supports an extension to normal parameter binding.
To retrieve the value of a field as it exists prior to application of cached updates, the field
name with 'OLD_'. This is especially useful when doing field comparisons in the WHERE
clause of the statement.

t

14.1.4. ModifySQL

Specifies the SQL UPDATE statement to use when applying an update to a record and cached updates
is enabled.

TMySQLUpdateSQL 266

© 1999-2021, Microolap Technologies

Syntax:

property ModifySQL: TStrings;

Description:

Set ModifySQL to the SQL UPDATE statement to use when applying an updated record to a dataset.
Statements can be parameterized queries. To create a UPDATE statement at design time, use the
UpdateSQL editor to create statements, such as:

UPDATE "Country"
SET Name = :Name, Capital = :Capital,
Continent = :Continent
WHERE Name = :OLD_Name

At run time, an application can write a statement directly to this property to set or change the
UPDATE statement.

 As the example illustrates, ModifySQL supports an extension to normal parameter
binding. To retrieve the value of a field as it exists prior to application of cached updates,
the field name with 'OLD_'. This is especially useful when doing field comparisons in the
WHERE clause of the statement.

14.1.5. Query

Returns the query object used to perform a specified kind of update.

Syntax:

property Query[UpdateKind: TUpdateKind]: TMySQLQuery;

Description:

Query is a read-only property that provides a reference to the internal TMySQLQuery that executes
the SQL that applies the cached data updates. Use properties and methods of TMySQLQuery to work
with this reference.

Using one of the TUpdateKind constants as an index for the Query property, the internal
TMySQLQuery object will have the SQL specified in the corresponding update SQL property:
DeleteSQL, InsertSQL, or ModifySQL. UpdateKind can be one of the following:

Microolap DAC for MySQL, v.3.3.2, Programmer's reference267

© 1999-2021, Microolap Technologies

Value Meaning

ukDelete Return the query object used to execute DELETE statements
(DeleteSQL).

ukInsert Return the query object used to execute INSERT statements
(InsertSQL).

ukModify Return the query object used to execute UPDATE statements
(ModifySQL).

Each query object executes a particular kind of SQL statement. The contents of the SQL statements
executed by these objects can be accessed directly using the ModifySQL, InsertSQL, and DeleteSQL
properties.

The main purpose of Query is to provide a way for an application to set the properties for an update
query object or to call the query object's methods.

 If a particular kind of update statement is not provided, then its corresponding query
object is nil. For example, if an application does not provide an SQL statement for the
DeleteSQL property, then setting Query[ukDelete] returns nil.

14.1.6. RefreshRecordSQL

Specifies an SQL statement to use to refresh a single record.

Syntax:

property RefreshRecordSQL: TStrings;

Description:

Set RefreshRecordSQL to an SQL statement to use when refresh a single record from a database.
Statements can be parameterized queries. To create a statement at design time, use the
RefreshRecordSQL editor to create statements, such as:

SELECT o.OrderNo, o.CustNo, c.Company FROM orders o
LEFT JOIN dbdemos.customer c ON o.CustNo = c.CustNo
WHERE o.CustNo = :OLD_CustNo and OrderNo = :OLD_OrderNo

At run time, an application can write a statement directly to this property to set or change the
RefreshRecord statement.

TMySQLUpdateSQL 268

© 1999-2021, Microolap Technologies

 As the example illustrates, RefreshRecordSQL supports an extension to normal parameter
binding. To retrieve the value of a field as it exists prior to application of cached updates,
the field name with 'OLD_'. This is especially useful when doing field comparisons in the
WHERE clause of the statement.

14.1.7. SQL

Returns a specified SQL statement used when applying cached updates.

Syntax:

property SQL[UpdateKind: TUpdateKind]: TStrings;

Description:

Returns the SQL statement in the ModifySQL, InsertSQL, or DeleteSQL property, depending on the
setting of the UpdateKind index. UpdateKind can be any of the following:

ukDelete
Return the query object used to execute DELETE statements (DeleteSQL).

ukInsert
Return the query object used to execute INSERT statements (InsertSQL).

ukModify
Return the query object used to execute UPDATE statements (ModifySQL).

14.2. Methods

Please see TMySQLUpdateSQL methods short descriptions below:

Apply
Sets the parameters for a specified SQL statement type, and executes the resulting statement.

Create
Creates an instance of an update object.

Destroy
Frees an instance of an update object.

ExecSQL
Executes a specified type of SQL statement to perform an update for an otherwise read-only
results set when cached updates is enabled.

SetParams
Binds parameters in an SQL statement prior to statement execution.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference269

© 1999-2021, Microolap Technologies

14.2.1. Apply

Sets the parameters for a specified SQL statement type, and executes the resulting statement.

Syntax:

procedure Apply(UpdateKind: TUpdateKind);

Description:

Call Apply to set parameters for an SQL statement and execute it to update a record. UpdateKind
indicates which SQL statement to bind and execute, and can be one of the following values:

ukDelete
Bind and execute the SQL statement in the DeleteSQL property

ukInsert
Bind and execute the SQL statement in the InsertSQL property

ukModify
Bind and execute the SQL statement in the ModifySQL property

Apply is primarily intended for manually executing UPDATE statements from an OnUpdateRecord
event handler.

 If an SQL statement does not contain parameters, it is more efficient to call ExecSQL
instead of Apply.

14.2.2. Create

Creates an instance of an update object.

Syntax:

constructor Create(AOwner: TComponent);

Description:

Call Create to instantiate an update object at run time. You do not need to call Create for update
objects placed in a data module or form at design time. Delphi automatically handles these objects.

14.2.3. Destroy

Frees an instance of an update object.

TMySQLUpdateSQL 270

© 1999-2021, Microolap Technologies

Syntax:

constructor Destroy;

Description:

Do not call Destroy directly in an application. Usually destruction of update objects is handled
automatically by Delphi. If an application creates its own instance of an update object, however, the
application should call Free, which verifies that the update object is not nil before calling Destroy.

14.2.4. ExecSQL

Executes a specified type of SQL statement to perform an update for an otherwise read-only results
set when cached updates is enabled.

Syntax:

procedure ExecSQL(UpdateKind: TUpdateKind);

Description:

Call ExecSQL to execute the SQL statement necessary for updating the records belonging to a read-
only result set when cached updates is enabled. UpdateKind specifies the statement to execute, and
can be one of the following values:

ukDelete
Execute the SQL statement used to delete records in the dataset (DeleteSQL)

ukInsert
Execute the SQL statement used to insert new records into the dataset (InsertSQL)

ukModify
Execute the SQL statement used to update records in the dataset (ModifySQL)

If the statement to execute contains any parameters, an application must call SetParams to bind the
parameters before calling ExecSQL. To determine if a statement contains parameters, examine the
appropriate ModifySQL, InsertSQL, or DeleteSQL property, depending on the statement type
intended for execution.

 To both bind parameters and execute a statement, call Apply.

 Prepared statements feature is used during the call for performance reason if it's possible.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference271

© 1999-2021, Microolap Technologies

14.2.5. SetParams

Binds parameters in an SQL statement prior to statement execution.

Syntax:

procedure SetParams(UpdateKind: TUpdateKind);

Description:

Call SetParams to bind parameters in an SQL statement associated with the update object prior to
executing the statement. UpdateKind indicates the type of statement for which to bind parameters,
and can be one of the following values:

ukDelete
Bind parameters for the SQL statement used to delete records (DeleteSQL)

ukInsert
Bind parameters for the SQL statement used to insert new records (InsertSQL)

ukModify
Bind parameters for SQL statement used to update records (ModifySQL)

Parameters are indicated in an SQL statement by a colon. Except for the leading colon in the
parameter name, the parameter name must exactly match the name of an existing field name for the
dataset.

 Parameter names can be prefaced by the 'OLD_' indicator. If so, the old value of the field
is used to perform the update instead of any updates in the cache.

15. FAQ

I've purchased DAC for MySQL, but I keep getting the nag (trial) screen. How can I get rid of it?

I've created new project with C++Builder, put some DAC for MySQL components on the form and run
it. I have an Access violation right after start. What can I do?

How can I set database connection properties (eg. coCompress) from code?

What do I need to use SSL-encrypted connections?

I have encountered a performance problem with reloading resultset. What can I do?

Should I use TMySQLUpdateSQL everytime with TMySQLQuery?

How to use Unicode data in my application?

FAQ 272

© 1999-2021, Microolap Technologies

My Delphi 5 application with DAC for MySQL components fails right after start with "Access violation"
exception. What shoul I do?

15.1. 1.I've purchased DAC for MySQL, but I keep getting the nag(trial) screen.
What can I do?

Q. I've purchased DAC for MySQL, but I keep getting the nag (trial) screen. How can I get rid
of it?

A. Please do the following:
1. Close your IDE if it is running
2. Uninstall all installed versions of DAC for MySQL
3. Find and manually delete all MySQLDAC*.bpl and dcl_MySQLDAC*.bpl files, where "*" is

your Delphi/C++Builder version
4. Install DAC for MySQL using installer of the full version downloaded from

http://microolap.com/my/downloads/.

Questions list

15.2. 2.I've created new project with C++Builder, put some DAC for MySQL
components on the form and run it. I have an Access violation right after start.
What can I do?

Q. I've created new project with C++Builder, put some DAC for MySQL components on the
form and run it. I have an Access violation right after start. What can I do?

A. Uncheck "Build with run-time packages" and "Use dynamic RTL" checkboxes in Project
Options dialog, and then rebuild your project.

Questions list

15.3. 3.How can I set database connection properties (eg. coCompress) from
code?

Q. How can I set database connection properties (eg. coCompress) from code?
A. Try the following code:

mySQLDatabase1.ConnectOptions := mySQLDatabase1.ConnectOptions + [coCompress];

Don't forget to add mySQLTypes to your uses list.

Questions list

15.4. 4.What do I need to use SSL-encrypted connections?

Q. What do I need to use SSL-encrypted connections?

http://microolap.com/my/downloads/

Microolap DAC for MySQL, v.3.3.2, Programmer's reference273

© 1999-2021, Microolap Technologies

A. There are a lot of Windows versions of OpenSSL binaries compiled by different people, and
some of them may cause problems when using them with DAC for MySQL.

We've tested DAC for MySQL with binaries downloaded from
http://www.openssl.org/related/binaries.html.

To make DAC for MySQL use SSL-encrypted connections you should do the following:
1. Setup SSLKey and SSLCert properties of TMySQLDatabase component
2. Put DLLs downloaded from OpenSSL.org near your application EXE file.

 Please note:
Your MySQL server must support SSL connections. To check if running MySQL server supports
SSL, examine the value of the have_openssl system variable:

mysql> SHOW VARIABLES LIKE 'have_openssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_openssl | YES |
+---------------+-------+

If the value is YES, the server supports SSL connections.
If the value is DISABLED, the server supports SSL connections, but it was not started with the
appropriate --ssl-xxx option.
If the value is NO, the server does not support SSL connections.

Questions list

15.5. 5.I have encountered a performance problem with reloading resultset.
What can I do?

Q. I have encountered a performance problem. I have a TMySQLQuery (or TMySQLTable)
that returns all records in a MySQL table and displays them in a DBGrid. I also have a
TMySQLUpdateSQL that is used to write changes back to the table. If I change a field in the
table, using the DBGrid, the TMySQLQuery seems to reload the entire dataset again. I would
expect that the component would just update itself with the new record, instead of
reloading the entire table. For this small table it is not too much of a problem, but for tables
with a large number of records it is a significant performance hit. The other components I am
evaluating, the entire table is not reloaded after the update.

A. Your expectations are absolutely right for single user local Database Systems (e.g. MS
Access), but MySQL is a multiuser server. This means, that each client works not with data, but
with a snapshot of data at the moment. This also called transaction schema.
Each user application must have most fresh (actual) snapshot of data, otherwise it may cause
warnings by its actions, e.g. UPDATE rows which were deleted or changed by another user etc.
The developer's task is to solve this problem. One of the approaches is to use timeouts to get
fresh result set. However, this is not the subject of this answer.

> I would expect that the component would just update itself with the new record, instead
of reloading the entire table.

http://www.openssl.org/related/binaries.html

FAQ 274

© 1999-2021, Microolap Technologies

But data may be changed a lot. Moreover, even the record posted to server may be changed by
server logic (e.g. by triggers or rules). Data in this record may also affect on other records, for
example, in a table which holds tree structure: deleting some parent node will cause deleting of
all descendants. That's why we reload whole result set.

> For this small table it is not too much of a problem, but for tables with a large number of
records it is a significant performance hit.

Users need a huge result set very seldom. More often they prefer to work with "pages", which
may be done by LIMIT and OFFSET clauses of SELECT statement.

> The other components I am evaluating, the entire table is not reloaded after the update.
We believe, that this is an extension of such products, but not standard state, i.e. some
properties allow this to be done.
By the way, our TMySQLTable component has BatchModify property that allows such mode to
be emulated.

Questions list

15.6. 6.Should I use TMySQLUpdateSQL everytime with TMySQLQuery?

Q. Should I use TMySQLUpdateSQL everytime with TMySQLQuery?
A. No, it should be used only for the following queries types.

Multitable queries:

SELECT table1.field1, table2.field2, func.field1 FROM table, table2;

Queries with operators in the field list:

SELECT field1 + field2, some_function(field3) FROM some_table;

Queries with constants or function calls in the field list:

SELECT 2, 'char constant', version FROM ...;

In other words, Query may be modified automatically (without using TMySQLUpdateSQL), if it
consists of plain field list taken from one and only one table.

Questions list

15.7. 7.How can I use Unicode data in my application?

Q. How to use Unicode data in my application?
A. Delphi/C++Builder support Unicode strings starting from 2009 version (Tiburon). DAC for
MySQL supports Unicode data starting from v2.7.0. So, to support Unicode in your application

Microolap DAC for MySQL, v.3.3.2, Programmer's reference275

© 1999-2021, Microolap Technologies

you should use Delphi/C++Builder at least version 2009 and DAC for MySQL at least version
2.7.0.
Another issue for Unicode-enabled DB-applications is connection characterset. DAC for MySQL
support Unicode strings only for UTF8 connection characterset. You have to set
TMySQLDatabase.ConnectionCharacterSet property to 'utf8' to make DAC for MySQL represent
strings as Unicode strings.
Connection character set can be UTF8 even if you don't set
TMySQLDatabase.ConnectionCharacterSet property to 'utf8', e.g. if the server is configured to
use UTF8 as default connection character set. You can use TMySQLDatabase.Utf8Used property
to ensure that your application is connected to MySQL server using UTF8 connection character
set.
If TMySQLDatabase.Utf8Used property value is False all strings are treated as sinlge-byte
strings with ANSI encoding. Such ANSI-behaviuor is the same as for DAC for MySQL before 2.7.0
version.

Questions list

See also: TMySQLDatabase.ConnectionCharacterSet, TMySQLDatabase.Utf8Used properties

15.8. 8. My Delphi 5 application with DAC for MySQL components fails right after
start with AV. What should I do?

Q. My Delphi 5 application with DAC for MySQL components fails right after start with
"Access violation" exception. What should I do?

A. There are some problems with Delphi 5 code optimizer that cause DAC for MySQL
applications failure right after start. There are three possible solutions:
1. Use "Install binaries" option during installation to use precompiled DAC for MySQL units.
2. Turn off code optimization in Project Options dialog.
3. Increase stack size to $00200000 in project options.

Questions list

16. Examples

AfterDelete, Format

Append, FieldValues, Post

BeforeInsert, Insert, AsInteger, FieldByName

BeforePost, Abort

Create, CreateBlobStream, Edit, CopyFrom

CreateTable method usage

Examples 276

© 1999-2021, Microolap Technologies

DataSetCount, DataSets

DisableControls, EnableControls, Eof

EditKey, GotoKey

EditRangeStart, EditRangeEnd, FieldByName, ApplyRange

EmptyTable

FieldCount, Fields, FieldName

FindField, AsString

FindNearest

GetBookmark, GotoBookmark, FreeBookmark, FindPrior, Value, OnDataChange, BOF

IndexDefs, Update, Count, Items, IndexName, Fields, Name

IndexFields, IndexFieldCount

MasterSource, MasterFields

Min, Max, Position, RecordCount, First, Next

MoveBy, SelectedIndex, Tag

ParamCount, DataType, StrToIntDef, AsXXX

SetKey, GotoNearest

SetRange, CancelRange, Refresh

SQL, ExecSQL

State, Seek, Truncate

16.1. AfterDelete, Format

This example displays a message on the form's status bar indicating the table's record count after a
record is deleted.

procedure TForm1.MySQLTable1AfterDelete(DataSet: TDataSet);
begin
 StatusBar1.SimpleText := Format('There are now %d records in the table',
 [DataSet.RecordCount]);
end;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference277

© 1999-2021, Microolap Technologies

16.2. Append, FieldValues, Post

This example appends a new record to a table when the user clicks a button. The two fields with
names ALPHANUMERICFIELD and INTEGERFIELD are filled from the contents of two edit controls.

procedure TForm1.Button1Click(Sender: TObject);
begin
 MySQLTable1.Append;
 MySQLTable1.FieldValues['ALPHANUMERICFIELD'] := Edit1.text;
 MySQLTable1.FieldValues['INTEGERFIELD'] := StrToInt(Edit2.text);
 MySQLTable1.Post;
end;

16.3. BeforeInsert, Insert, AsInteger, FieldByName

This example uses the BeforeInsert event to do data validation; if the StrToInt function raises an
exception, the edit control's contents are set to a valid value so the assignment to the INTEGER field
in the table will succeed.

procedure TForm1.MySQLTable1BeforeInsert(DataSet: TDataSet);
begin
 try
// Make sure edit field can be converted to integer -
// - otherwise this will raise an exception.
 StrToInt(Edit1.Text);
 except
 Edit1.Text := '0';
 end;
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
 MySQLTable1.Insert;
 MySQLTable1.FieldByName('QUANTITY').AsInteger := StrToInt(Edit1.Text);
 MySQLTable1.Post;
end;

16.4. BeforePost, Abort

This example checks for a valid entry in a TDBEdit control and calls the Abort procedure if the control
is empty; Abort cancels the post before it happens.

procedure TForm1.MySQLTable1BeforePost(DataSet: TDataSet);
begin
 if DBEdit1.Text = '' then
 Abort;
end;

Examples 278

© 1999-2021, Microolap Technologies

16.5. Create, CreateBlobStream, Edit, CopyFrom

The following example copies the data in the Notes field of MySQLTable1 to the Remarks field of
MySQLTable2.

procedure TForm1.Button1Click(Sender: TObject);
var
 Stream1, Stream2 : TBlobStream;
begin
 Stream1 := TBlobStream.Create(MySQLTable1Notes, bmRead);
 try
 MySQLTable2.Edit;
// Here's a different way to create a blob stream
 Stream2 := MySQLTable2.CreateBlobStream(MySQLTable2.FieldByName('Remarks'),
 bmReadWrite);
 try
 Stream2.CopyFrom(Stream1, Stream1.Size);
 MySQLTable2.Post;
 finally
 Stream2.Free;
 end;
 finally
 Stream1.Free;
 end;
end;

16.6. CreateTable() method usage

This example demostrates TMySQLTable.CreateTable method used to create database tables at run-
time.

mySQLTable1.TableName := 'sometable'; //table name
 //integer field
 with mySQLTable1.FieldDefs.AddFieldDef do
 begin
 Name := 'ID';
 DataType := ftInteger;
 Required := True;
 end;
 //string field
 with mySQLTable1.FieldDefs.AddFieldDef do
 begin
 Name := 'VarcharField';
 DataType := ftString;
 Size := 255;
 Required := True;
 end;
 //primary key
 with mySQLTable1.IndexDefs.AddIndexDef do
 begin
 Options := [ixPrimary];
 Fields := 'ID';
 end;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference279

© 1999-2021, Microolap Technologies

 //some other index
 with mySQLTable1.IndexDefs.AddIndexDef do
 begin
 Options := [ixUnique];
 Fields := 'VarcharField';
 Name := 'idxForStringField';
 end;
 mySQLTable1.CreateTable;

See also: CreateTable method

16.7. DataSetCount, DataSets

The following code fragment illustrates how DataSets and DataSetCount can be used to ensure that
an action is taken for every open dataset that is a table.

After that all open datasets will be closed.

var
 I: Integer;
begin
 with MySQLDatabase1 do
 begin
 while DataSetCount <> 0 do
 begin
 if DataSets[0] is TMySQLTable then
 begin
 // Some code
 end;
 DataSets[0].Active := False;
 end;
 end;
end;

16.8. DisableControls, EnableControls, Eof

Usually DisableControls is called within the context of a try...finally block that re-enables the controls
even if an exception occurs.

For example:

with CustMySQLTable do
begin
 DisableControls;
 try
 First;
 while not Eof do
 begin
 // Process each record here
 Next;

Examples 280

© 1999-2021, Microolap Technologies

 end;
 finally
 EnableControls;
 end;
end;

16.9. EditKey, GotoKey

The following code uses the EditKey and GotoKey methods to move to a particular record on
MySQLTable1.

The actual field values are not changed when making the assignments because of the call to EditKey.

with MySQLTable1 do
begin
 EditKey;
 FieldByName('State').AsString := 'CA';
 FieldByName('City').AsString := 'Santa Barbara';
 GotoKey;
end;

16.10. EditRangeStart, EditRangeEnd, FieldByName, ApplyRange

To get result set where Company field value lays between Edit1 and Edit2:

with Customer do
begin
 EditRangeStart;
 // Set start range based on text of Edit1 component
 FieldByName('Company').AsString := Edit1.Text;
 EditRangeEnd;
 // Set end range based on value of Edit2 component
 FieldByName('Company').AsString := Edit2.Text;
 ApplyRange; // Apply the ranges
end;

16.11. EmptyTable

The following example uses a table component to empty a database table. First the properties of the
table component are set to specify the table that should be emptied.

with MySQLTable1 do
 begin
 Active := False;
 TableName := 'CustInfo';
 EmptyTable;
 end;

Microolap DAC for MySQL, v.3.3.2, Programmer's reference281

© 1999-2021, Microolap Technologies

16.12. FieldCount, Fields, FieldName

This example displays a message box with the names of all fields in the table.

procedure TForm1.Button2Click(Sender: TObject);
var
 i: Integer;
 Info: String;
begin
 Info := 'The fields of table ' + MySQLTable1.TableName +
 ' are:'#13#10#13#10;
 for i := 0 to MySQLTable1.FieldCount - 1 do
 Info := Info + MySQLTable1.Fields[i].FieldName + #13#10;
 ShowMessage(Info);
end;

16.13. FindField, AsString

Two ways to modify field value:

with MySQLTable1 do
begin
 // This is the safe way to change 'CustNo' field
 FindField('CustNo').AsString := '1234';
 // This is *not* the safe way to change 'CustNo' field
 Fields[0].AsString := '1234';
end;

16.14. FindNearest

The following example performs an incremental search on a table.

The form contains a dbgrid, an edit box, a data source, and a table. As the user types in the edit box,
the cursor of the grid moves to the nearest match in the table.

procedure TForm1.FormActivate(Sender: TObject);
begin
 MySQLTable1.TableName := 'Customer';
 MySQLTable1.Active := True;
 MySQLTable1.IndexName := 'ByCompany';
end;
procedure TForm1.Edit1Change(Sender: TObject);
begin
 MySQLTable1.FindNearest([Edit1.Text]);
end;

Examples 282

© 1999-2021, Microolap Technologies

16.15. GetBookmark, GotoBookmark, FreeBookmark, FindPrior, Value,
OnDataChange, BOF

This example uses a button to copy the value of a field in the previous record into the corresponding
field in the current record.

procedure TForm1.CopyDataClick(Sender: TObject);
var
 SavePlace: TBookmark;
 PrevValue: Variant;
begin
 with MySQLTable1 do
 begin
 // Get a bookmark so that we can return to the same record
 SavePlace := GetBookmark;
 // Move to prior record
 FindPrior;
 // Get the value
 PrevValue := Fields[0].Value;
 // Move back to the bookmark
 // this may not be the next record anymore
 // if something else is changing the dataset asynchronously
 GotoBookmark(SavePlace);
 // Set the value
 Fields[0].Value := PrevValue;
 // Free the bookmark
 FreeBookmark(SavePlace);
 end;
end;

To ensure that the button is disabled when there is no previous record, the OnDataChange event of
the DataSource detects when the user moves to the beginning of file (Bof property becomes True),
and disables the button.

procedure TForm1.Table1DataChange(Sender: TObject; Field: TField);
begin
 if MySQLTable1.BOF then
 CopyData.Enabled := False
 else
 CopyData.Enabled := True;
end;

16.16. IndexDefs, Update, Count, Items, IndexName, Fields, Name

This example uses the IndexName property to sort the records in a table on the CustNo and OrderNo
fields.

MySQLTable1.Active := False;
// Get the current available indexes
MySQLTable1.IndexDefs.Update;
// Find one which combines Customer Number ('CustNo')

Microolap DAC for MySQL, v.3.3.2, Programmer's reference283

© 1999-2021, Microolap Technologies

// and Order Number ('OrderNo')
for I := 0 to MySQLTable1.IndexDefs.Count - 1 do
 if MySQLTable1.IndexDefs.Items[I].Fields = 'CustNo;OrderNo' then
// Set that index as the current index for the table
 MySQLTable1.IndexName := MySQLTable1.IndexDefs.Items[I].Name;
MySQLTable1.Active := True;

16.17. IndexFields, IndexFieldCount

The following code calculates the total length of the index and assigns it to the variable TotalLen.

TotalLen := 0;
with MySQLTable1 do
 for I := 0 to IndexFieldCount - 1 do
 Inc(TotalLen, IndexFields[I].DataSize);

16.18. MasterSource, MasterFields

Suppose you have a master table named Customer that contains a CustNo field, and you also have a
detail table named Orders that also has a CustNo field.

To display only those records in Orders that have the same CustNo value as the current record in
Customer, write this code:

Orders.MasterSource := 'CustSource';
Orders.MasterFields := 'CustNo';

If you want to display only the records in the detail table that match more than one field value in the
master table, specify each field and separate them with a semicolon.

Orders.MasterFields := 'CustNo;SaleDate';

16.19. Min, Max, Position, RecordCount, First, Next

To read through all records in a table and update the ProgressBar accordingly:

procedure TForm1.Button1Click(Sender: TObject);
var
 i: Integer;
begin
 with ProgressBar1 do
 begin
 Min := 0;
 Max := MySQLTable1.RecordCount;
 MySQLTable1.First;
 for i := Min to Max do
 begin
 Position := i;
 MySQLTable1.Next;

Examples 284

© 1999-2021, Microolap Technologies

 end;
 end;
end;

16.20. MoveBy, SelectedIndex, Tag

The following example enables the user to move the current selected cell in a dbgrid. The Up and
Down buttons have their OnClick events assigned to the UpDownClick procedure. The Left and Right
buttons have their OnClick events assigned to the LeftRightClick procedure. The Up and Left buttons
have their Tag property set to -1, while the Down and Right buttons have their Tag property set to 1.

procedure TForm1.UpDownClick(Sender: TObject);
begin
 MySQLTable1.MoveBy(TComponent(Sender).Tag);
 DBGrid1.SetFocus;
end;
procedure TForm1.LeftRightClick(Sender: TObject);
begin
 DBGrid1.SelectedIndex := DBGrid1.SelectedIndex + TComponent(Sender).Tag;
 DBGrid1.SetFocus;
end;

16.21. ParamCount, DataType, StrToIntDef, AsXXX

This example fills in the parameters of a query from the entries of a list box.

var
 I: Integer;
 ListItem: String;
begin
 for I := 0 to MySQLQuery1.ParamCount - 1 do
 begin
 ListItem := ListBox1.Items[I];
 case MySQLQuery1.Params[I].DataType of
 ftString:
 MySQLQuery1.Params[I].AsString := ListItem;
 ftSmallInt:
 MySQLQuery1.Params[I].AsSmallInt := StrToIntDef(ListItem,0);
 ftInteger:
 MySQLQuery1.Params[I].AsInteger := StrToIntDef(ListItem,0);
 ftWord:
 MySQLQuery1.Params[I].AsWord := StrToIntDef(ListItem,0);
 ftBoolean:
 begin
 if ListItem = 'True' then
 MySQLQuery1.Params[I].AsBoolean := True else
 MySQLQuery1.Params[I].AsBoolean := False;
 end;
 ftFloat:
 MySQLQuery1.Params[I].AsFloat := StrToFloat(ListItem);
 ftCurrency:
 MySQLQuery1.Params[I].AsCurrency := StrToFloat(ListItem);

Microolap DAC for MySQL, v.3.3.2, Programmer's reference285

© 1999-2021, Microolap Technologies

 ftBCD:
 MySQLQuery1.Params[I].AsBCD := StrToCurr(ListItem);
 ftDate:
 MySQLQuery1.Params[I].AsDate := StrToDate(ListItem);
 ftTime:
 MySQLQuery1.Params[I].AsTime := StrToTime(ListItem);
 ftDateTime:
 MySQLQuery1.Params[I].AsDateTime := StrToDateTime(ListItem);
 end;
 end;
end;

16.22. Prepared, Prepare

if not MySQLQuery1.Prepared then
begin
 MySQLQuery1.Close;
 MySQLQuery1.Prepare;
 MySQLQuery1.Open
end;

16.23. SetKey, GotoNearest

To set cursor to row in which City field begins with 'Santa':

with MySQLTable1 do
begin
 SetKey;
 FieldByName('State').AsString := 'CA';
 FieldByName('City').AsString := 'Santa';
 GotoNearest;
end;

See also: TMySQLTable.SetKey, TMySQLTable.GotoNearest methods

16.24. SetRange, CancelRange, Refresh

The following example sets a range for a table. The form requires two edit boxes, a data source, a
table, a dbgrid, and a button.

procedure TForm1.FormActivate(Sender: TObject);
begin
 MySQLTable1.TableName := 'Customer';
 MySQLTable1.Active := True;
 MySQLTable1.IndexName := 'ByCompany';
end;
procedure TForm1.Button1Click(Sender: TObject);
begin

Examples 286

© 1999-2021, Microolap Technologies

 if Button1.Caption = '&Apply Range' then
 begin
 MySQLTable1.SetRange([Edit1.Text],[Edit2.Text]);
 Button1.Caption := '&Drop Range';
 end
 else
 begin
 MySQLTable1.CancelRange;
 MySQLTable1.Refresh;
 Button1.Caption := '&Apply Range';
 end;
end;

16.25. SQL, ExecSQL

To execute SQL statement deleting all rows where Country field value is equal to Argentina:

MySQLQuery1.Close;
MySQLQuery1.SQL.Clear;
MySQLQuery1.SQL.Add(
 'Delete from Country where Name = ''Argentina''');
MySQLQuery1.ExecSQL;

16.26. State, Seek, Truncate

The following example deletes the stream from position 60 within the blob stream to the end.

procedure TForm1.Button1Click(Sender: TObject);
var
 Stream1: TBlobStream;
begin
 MySQLTable1.Edit;
 if MySQLTable1.State = dsEdit then
 begin
 Stream1 := MySQLTable1.CreateBlobStream(FieldByName('Notes', bmReadWrite);
 try
 Stream1.Seek(60, 0); // Move to byte 60
 Stream1.Truncate; // Delete from current position (60) to end of stream.
 MySQLTable1.Post;
 finally
 Stream1.Free;
 end;
 end;
end;

17. DataTypes map

This section shows how various MySQL datatypes are mapped to Borland/CodeGear/Embarcadero's
TField descendants.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference287

© 1999-2021, Microolap Technologies

MySQL datatypes TField descedant

BIT, BIGINT TLargeintField (see warning below)

TINYINT(1), BOOL, BOOLEAN TSmallIntField or TBooleanField (see note #4
below)

other TINYINT TSmallIntField

SMALLINT TSmallIntField

MEDIUMINT, INT, INTEGER, YEAR TIntegerField

UNSIGNED INT TLargeintField

FLOAT, DOUBLE, DECIMAL, DEC, FIXED TFloatField

DATE TDateField

DATETIME, TIMESTAMP TDateTimeField

TIME TTimeField

CHAR TStringField (or TWideStringField, see note
#1 below)

VARCHAR(<8192) TStringField (or TWideStringField, see notes
#1 and #2 below)

VARCHAR(>=8192) TMemoField (or TWideMemoField, see notes
#1 and #2 below)

BINARY, VARBINARY, TINYBLOB, BLOB,
MEDIUMBLOB, LONGBLOB

TBlobField

TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT TMemoField (or TWideMemoField, see notes
#1 and #5 below)

DataTypes map 288

© 1999-2021, Microolap Technologies

MySQL datatypes TField descedant

ENUM('n','y'), ENUM('f','t') TBooleanField or TStringField (see note #4
below)

other ENUM TStringField (or TWideStringField, see note
#1 below)

SET TStringField (or TWideStringField, see note
#1 below)

 #1
TStringField and TMemoField can be replaced with TWideStringField and
TWideMemoField respectively for Unicode data in Delphi/C++Builder 2009. Please read this
FAQ section if you want to use Unicode strings in your application: How can I use Unicode
data in my application?

 #2
Be careful while working with Unicode encoded fields (e.g., utf8) in "pre-Delphi-2009"
projects. These fields length is calculated in bytes, not in symbols. So varchar(3000) can
contain from 3000 to 12000 bytes. This means that it can be mapped to TStringField or to
TMemoField in different cases for "pre-Delphi-2009" projects.

 #3
If you want to use TNT Unicode Controls to implement Unicode support to your "pre-Delphi-
2009" application you can use our free package with wrapper-components - Wrappers for
TNT Unicode Controls. All string fields are mapped to TTNTStringField datatype with this
package.

 #4
DAC for MySQL treats ENUM('n','y') or ENUM('f','t') MySQL datatypes as TBooleanField
fields and TINYINT datatype as TSmallIntField by default. But MySQL Reference Manual says
that BOOL and BOOLEAN datatypes are synonyms for TINYINT(1) and even defines True (as
1) and False (as 0) constants for it. You can let DAC for MySQL to treat BOOL, BOOLEAN and
TINYINT(1) datatypes as TBooleanField by enabling M_BOOL_AS_INT conditional define in
mySQLDAC.inc file and rebuilding DAC for MySQL packages. All ENUM fields are mapped to
TStringField (or TWideStringField) fields in this case.

http://www.tntware.com/delphicontrols/unicode/
http://microolap.com/products/connectivity/mysqldac/download/
http://microolap.com/products/connectivity/mysqldac/download/

Microolap DAC for MySQL, v.3.3.2, Programmer's reference289

© 1999-2021, Microolap Technologies

 #5
If you use 'utf8' character set and 'utf8_bin' collation for TINYTEXT, TEXT, MEDIUMTEXT or
LONGTEXT column MySQL marks it with BINARY flag. This cause this columns to be mapped
by DAC for MySQL to TBlobField rather then to TMemoField. This can break correct Unicode
data handling in "Delphi-2009" projects. Please consider use 'utf8_general_ci' or
'utf8_unicode_ci' collation for MEMO columns for proper Unicode texts handling.

Delphi 7 and prior has poor support for int64 values in variant type. This means that you'll be
unable to use Locate and similar methods with such fields. Lookup fields and master-detail
tables will not work properly too because of their dependence on Locate method. Please
update your IDE to BDS 2006 (or later) or don't use BIGINT and UNSIGNED INT datatypes for
keys and indexes if you need to use them in lookup fields. Also you can't use variant-style
properties (FieldValues, AsVariant and so on) with such fields.

DataTypes map 290

© 1999-2021, Microolap Technologies

18. License Agreement

NOTICE TO USER:

THIS IS AN AGREEMENT GOVERNING YOUR USE OF THE SOFTWARE TITLED Microolap DAC for MySQL,
FURTHER DEFINED HEREIN AS "PRODUCT," AND THE LICENSOR OF THE PRODUCT IS WILLING TO
PROVIDE YOU WITH ACCESS TO THE PRODUCT ONLY ON THE CONDITION THAT YOU ACCEPT ALL OF THE
TERMS AND CONDITIONS CONTAINED IN THIS AGREEMENT. BELOW, YOU ARE ASKED TO ACCEPT THIS
AGREEMENT AND CONTINUE TO INSTALL OR, IF YOU DO NOT WISH TO ACCEPT THIS AGREEMENT, TO
DECLINE THIS AGREEMENT, IN WHICH CASE YOU WILL NOT BE ABLE TO INSTALL OR OPERATE THE
PRODUCT. BY ACKNOWLEDGING YOUR CONSENT HERETO AND BY INSTALLING AND OPERATING THIS
PRODUCT YOU ACCEPT ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT. For purposes hereof
"Operating" shall mean accessing, storing, loading, installing, Using (as defined below), and copying
the Product into the memory of a Client Device, as defined below. "Using" shall mean executing and
displaying the product on a Client Device or otherwise benefiting from utilizing, deploying or using the
Product or its functionality.

This Electronic End User License Agreement (the "Agreement") is a legal agreement between you
(either an individual or an entity), the Licensee, and MicroOLAP Technologies Ltd., (the "Licensor"),
regarding the Product and related support service you are about to install and Operate and/or other
related services, including without limitation:

a) all of the contents of the files, including disk(s), CD-ROM(s) or other media with which this
Agreement is provided and including all forms of code, such as Source Code, Object Code, dynamic
or static libraries, and/or executable files as provided and in a form that is provided by Licensor to
you (the "Software"). For the avoidance of doubt, by way of example, but not exclusion, if a
specific file is provided by Licensor in Object Code only, the Source Code for such files shall not be
deemed a part of the Software provided by Licensor to you. For purposes hereof "Source Code"
shall mean the human-readable form of the computer programming code and related system
documentation including all comments and any procedural code such as job control language and
"Object Code" shall mean computer programs assembled or compiled in magnetic or electronic
binary form on software media, which are readable and usable by machines, but not generally
readable by humans without reverse-assembly, reverse-compiling, or reverse-engineering.

b) all support services provided to you by Licensor in connection with the Software (the
"Services");

c) and all successor upgrades, modified versions, modified modules, revisions, patches,
enhancements, fixes, modifications, copies, additions or maintenance releases of the Software, if
any, licensed to you by the Licensor (collectively, the "Updates"), and

d) related user documentation and explanatory materials or files provided in written, "online" or
electronic form (the "Documentation" and together with the Software, Samples, Updates, and
Services the "Product").

For the purposes of this Agreement, "Licensor Site" shall mean the Internet website maintained by or
on behalf of Licensor from which the Software is available for download pursuant to a license from
Licensor. The Licensor Site is currently located at http://www.microolap.com.

You are subject to the terms and conditions of this End User License Agreement whether you access or
obtain the Product directly from the Licensor, or through any other source. For purposes hereof, "you"
or "Licensee" means the individual person installing or using the Product on his or her own behalf; or,
if the Product is being downloaded or installed on behalf of an organization, such as an employer,
"you" means the organization for which the Product is downloaded or installed, then the person
accepting this agreement represents hereby that such organization has authorized such person to
accept this agreement on the organization's behalf. For purposes hereof the term "organization,"
without limitation, includes any partnership, limited liability company, corporation, association, joint
stock company, trust, joint venture, labor organization, unincorporated organization, or governmental
authority.

If you do not agree to the terms and conditions of this Agreement, the Licensor is unwilling to license
the Product to you. In such event, you may not Operate the Product in any way.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference291

© 1999-2021, Microolap Technologies

IF THE LICENSOR AND YOU HAVE AGREED ON AND PROPERLY EXECUTED A SEPARATE
CONTEMPORANEOUS OR SUBSEQUENT TERMS OF USE OR EXHIBITS (the "Terms of Use"),
WHICH ARE SUPPLEMENTAL, DIFFERENT OR INCONSISTENT WITH THE TERMS OF THIS
AGREEMENT, SUCH TERMS OF USE SHALL CONTROL, PROVIDED THAT (i) SUCH TERMS OF USE
SPECIFICALLY ACKNOWLEDGE AND REFER TO THIS AGREEMENT, AND (ii) ALL OTHER TERMS
AND CONDITIONS OF THIS AGREEMENT REMAIN IN FULL FORCE AND EFFECT.

BEFORE YOU PUT A CHECKMARK AT THE "I ACCEPT THE AGREEMENT" BUTTON AND PRESS "NEXT,"
PLEASE CAREFULLY READ THE TERMS AND CONDITIONS OF THIS AGREEMENT, AS SUCH ACTIONS ARE A
SYMBOL OF YOUR SIGNATURE AND BY CLICKING ON THE "I ACCEPT THE AGREEMENT" AND "NEXT"
BUTTONS, YOU ARE CONSENTING TO BE BOUND BY AND ARE BECOMING A PARTY TO THIS AGREEMENT
AND AGREE THAT THIS AGREEMENT IS ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT
SIGNED BY YOU. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, CLICK THE
"CANCEL" BUTTON AND THE PRODUCT WILL NOT BE INSTALLED ON YOUR CLIENT DEVICE, AS SUCH
TERM IS DEFINED BELOW.

For your reference, you may refer to the copy of this Agreement that can be found in installed files of
the Software as license.rtf.

You may also receive an electronic copy of this Agreement by contacting Licensor at
sales@microolap.com.

1. Proprietary Rights and Non-Disclosure.

1.1. Ownership Rights. You agree that the Product and the authorship, systems, ideas, methods
of operation, derivative Documentation and other information contained in the Product, are
proprietary intellectual properties and or the valuable trade secrets of the Licensor and are
protected by applicable civil and criminal law, and by the law of copyright, trade secret, trademark
and patent and international treaties. You may use trademarks only insofar as to identify printed
output produced by the Product in accordance with accepted trademark practice, including
identification of trademark owner's name. Such use of any trademark does not give you any rights
of ownership in that trademark. The Licensor and its suppliers own and retain all right, title, and
interest in and to the Product, including all copyrights, patents, trade secret rights, trademarks,
and other intellectual property rights therein. Your possession, installation or use of the Product
does not transfer to you any title to the intellectual property in the Product, and you will not
acquire any rights to the Product except as expressly set forth in this Agreement. All copies of the
Product made hereunder must contain the same proprietary notices that appear on and in the
Product. Except as stated herein, this Agreement does not grant you any intellectual property
rights in the Product.

1.2. Source Code and Modifications. You acknowledge that the source code for the Product is
proprietary to the Licensor and constitutes trade secrets of the Licensor. Except as otherwise
specifically provided herein or in Terms of Use, you agree not to disassemble, decompile or
"unlock", decode or otherwise reverse-translate or reverse-engineer, or attempt in any manner to
reconstruct or discover any source code or underlying algorithms of the Product or any part
thereof provided solely in Object Code form but you may change, add or delete any files of the
licensed copy of the Products and you may adapt or modify the Source Code solely for purposes of
Operating a licensed copy of the Product and as expressly permitted pursuant to the type of the
License purchased hereunder provided that you may not, in any event, remove or alter any
copyright notices or other proprietary notices on any copies of the Product, whether so modified
or not, and further provided that any such change, addition, deletion, adaptation or modification
voids any express warranty provided herein and terminates any right to support services.

1.3. Confidential Information. You agree that, unless otherwise specifically provided herein the
Product, including the specific design and structure of individual programs and the Product,
constitute confidential proprietary information of the Licensor or its suppliers and/or licensors. You
agree not to transfer, copy, disclose, provide or otherwise make available such confidential
information in any form to any third party. For purposes hereof, "License Key" or "Registration
Key" shall mean a file or a unique sequence of digit and/or symbols provided to you by the
Licensor confirming the purchase of the license from the Licensor, which may carry the information
about the License, i.e. its type, the user name and the number of licenses purchased, and
enabling the full functionality of the Product in accordance with the License granted under this
Agreement. You agree to implement reasonable security measures to protect such confidential
information. If you download the Software from the Internet or similar on-line source, you must
include the copyright notices resident on the Software with any on-line distribution and on any

License Agreement 292

© 1999-2021, Microolap Technologies

media you distribute that includes the Software.

2. Grant of License.

2.1. License. Unless otherwise specifically indicated under a valid Terms of Use, the Licensor
grants you a non-exclusive and non-transferable license without the right to sublicense (the
"License") and Licensee hereby accepts such License as follows, provided that unless otherwise
agreed by Licensor or specified by Terms of Use, each License is granted per one Licensee:

a) Trial License. If you have received, downloaded and/or installed a Trial Version of the
Product (the "Trial Version") and are hereby granted a Trial License for the Software and you
may Operate the Product only for evaluation and demonstration purposes and only during
the single applicable evaluation period of thirty (30) days (the "Trial Period"), unless
otherwise indicated, from the date of the initial installation. Any use of the Product for other
purposes or beyond the applicable evaluation period is strictly prohibited, provided however
that, subject to the restrictions contained herein, you may copy and distribute the Trial
Version of the Software without any modifications whatsoever, and including this Agreement,
to any third party. Licensee shall have no technical support rights during the Trial Period. The
Licensor shall not be required to provide any support and Updates, as stated below, for the
Trial Version of the Product. During the Trial Period, the Licensor provides no warranty
whatsoever and assumes and bears no liability whatsoever for the Trial Version of the
Product.

b) Personal Use License. If the Product is licensed under Personal License with Software
provided in Object Code only upon the terms specified in the applicable registration, Terms of
Use, invoicing or packaging for the Product, you personally may use of the Product solely for
Personal Use ("Personal License"). "Personal Use" shall mean personal non-commercial,
non-business, non-government Use, and not on behalf or for the benefit of any clients and
excludes any commercial purposes whatsoever, which include without limitation: advertising
marketing and promotional materials/services on behalf of an actual client, employer,
employee or for your own benefit, any products that are commercially distributed, whether or
not for a fee, any materials or services for sale or for which fees or charges are paid or
received. Upon payment for the License and registration of the Product, you are granted a
non-exclusive and non-transferable personal License to (i) install one (1) copy of the Product
on up to three (3) Client Devices owned by you, and (ii) subject to the payment of the
applicable fees and your compliance with the terms hereof, to Use one (1) copy of the
specified version of the Product during the Term of this Agreement, on one (1) of such Client
Devices at any given time. Additionally, the individual licensing terms may specify other terms,
conditions and restrictions of Operating the Product.

c) Site License. If the Product is licensed with site license terms specified in the applicable
product invoicing or packaging for the Product, you may Operate and Use the Product on an
unlimited number of Client Devices within a single building owned or leased by your company.
Additionally, the individual licensing terms may specify other terms, conditions and restrictions
of Using the Product (the "Site License").

d) Business License. If the Product is licensed under Business License with the Software
provided in Object Code only upon the terms specified in the applicable Terms of Use,
invoicing or packaging for the Product, you may Use of the Product solely for Business Use
(the "Business License"). For purposes hereof, "Business Use" shall mean business,
commercial, government Use only for internal business purposes of such entity without the
right to distribute the applications, frameworks or components developed Using the Software
(the "Results") to third parties provided that nothing herein shall be construed as creating
any obligations of the Licensor to any end user of the Results. Under the Business License,
any Use or Operating of the Product or transfer of the results of Using of the Product on a
computer device owned by a third party is strictly prohibited unless a separate License is
purchased therefor.

e) Commercial License. If the Product is licensed under Commercial License with the Software
provided in Object Code only upon the terms specified in the applicable Terms of Use,
invoicing or packaging for the Product, you may Use of the Product solely for Commercial Use
(the "Commercial License"). For purposes hereof, "Commercial Use" shall mean business,
commercial, government Use with the right to distribute the Results to third parties. Licensee
may Use the Product licensed under the Commercial License on an unlimited number of web
servers and domains owned, rented or leased by Licensee. Under the Commercial License,

Microolap DAC for MySQL, v.3.3.2, Programmer's reference293

© 1999-2021, Microolap Technologies

any Use or Operating of the Product or transfer of the results of Using of the Product on a
computer device owned by a third party is strictly prohibited unless a separate License is
purchased therefor.

f) Intranet License. If the Product is licensed with Intranet License terms specified in the
applicable product invoicing or packaging for the Product, you may Operate and Use the
Product on an unlimited number of Client Devices within a single local area network and/or
private computer network under your control (the "Intranet License"). Additionally, the
individual licensing terms may specify other terms, conditions and restrictions of Using the
Product.

g) Internet License. If the Product is licensed with Internet License terms specified in the
applicable product invoicing or packaging for the Product, you may Operate and Use the
Product on an unlimited number of Client Devices on a single server accessible via internet
(the "Internet License"). Additionally, the individual licensing terms may specify other terms,
conditions and restrictions of Using the Product.

h) Compiled Units. If you are granted a Commercial License pursuant to Section 2.1(e) hereof,
in addition to the licenses and rights granted therein, Licensor grants you a nonexclusive,
deployment-free, royalty-free right to reproduce and distribute the Object Code version of
those portions of the Software which are identified in the Documentation as 'compiled
units' (the "Compiled Units") provided that you comply with all of the following requirements:

i). you distribute the Compiled Units in Object Code form only in conjunction with and as
part of your software application product which adds significant and primary functionality
and when the absence of Compiled Units will make your software application inoperable;

ii). you do not use Licensor name, logo or trademarks to market your software application
product; and

iii). you include a valid copyright, trademark or any other proprietary notices on your
Software identifying the Licensor as the owner of the Compiled Units.

i) Source Code License. The Licensor, pursuant to Terms of Use or invoicing terms, and in
conjunction with one of Licenses granted under Section 2 hereof, may grant you certain
rights to Software provided in Source Code as follows (the "Source Code License"):

i). For purposes hereof, "Source Code" shall mean the human-readable form of the
computer programming code and related system documentation including all comments
and any procedural code such as job control language. Provided you have purchased a
license to a part of the Software supplied in Source Code form, you may make
modifications, enhancements, derivative works and/or extensions to that licensed Source
Code provided to you under the terms set forth in this Section 2.1(f).

ii). While the Licensor does not claim any ownership rights in the Results, in the event you
develop any modifications, enhancements, derivative works and/or extensions to the
licensed Source Code (the "Derivatives"), either independently or jointly with the
Licensor, such Derivatives and all rights associated therewith will be the exclusive
property of the Licensor.

iii). You shall not grant, either expressly or by implication, any rights, title, interest, or
licenses to any Derivatives to any third party. You will, however, be entitled to use such
Derivatives under the terms set forth in this Agreement. You hereby assign all right, title
and interest in and to such Derivatives to the licensed Source Code to the Licensor.

iv). You also agree to execute, acknowledge and deliver to the Licensor all documents and
instruments and do all things and actions Licensor deems necessary or desirable, at no
cost to you but at Licensor's expense, to enable the Licensor to obtain and secure such
Derivatives anywhere in the World. You agree to secure all necessary rights and
obligations from relevant employees, or third parties in order to satisfy the above
obligations. You may not distribute the Licensor's Source Code, or any Derivatives, in
Source Code form.

v). Under no circumstances may any portion of the Source Code be distributed, disclosed
or otherwise made available to any third party without the express, prior written consent
of the Licensor. Under no circumstances may the Source Code be used in whole or in part,

License Agreement 294

© 1999-2021, Microolap Technologies

as the basis for creating a product that provides the same, or substantially the same,
functionality as any of the Licensor's product. You will not take any action, or assist or
otherwise aid anyone else in taking any action that would, in any way, limit the Licensor's
independent development, sale, assignment, licensing or use of its Software or any
Derivatives thereof. You will not modify or delete, in whole or part, any copyright, trade
secret, proprietary, confidential or other notice thereon or therein, including a prominent
notice on the Results "Powered by Microolap DAC for MySQL" without the express, prior
written consent of the Licensor.

vi). YOU UNDERSTAND, ACKNOWLEDGE AND AGREE THAT SOURCE CODE IS LICENSED "AS
IS," AND THAT THE LICENSOR DOES NOT PROVIDE ANY TECHNICAL SUPPORT FOR SOURCE
CODE.

j) Business License with Source Code License. If the Product is licensed under Business
License with Source Code License upon the terms specified in the applicable Terms of Use,
invoicing or packaging for the Product, your rights to Use the Product shall be the rights
granted under the Business License together with the rights granted under the Source Code
License (the "Business License with Source Code License").

k) Commercial License with Source Code License. If the Product is licensed under Commercial
License with Source Code License upon the terms specified in the applicable Terms of Use,
invoicing or packaging for the Product, your rights to may Use of the Product shall be the
rights granted under the Commercial License together with the rights granted under the
Source Code License (the "Commercial License with Source Code License").

l) Customized Licenses. The Licensor may grant you a specific customized terms of License
pursuant to a valid Terms of Use signed by both parties hereto in which case such the terms
and conditions of the Terms of Use shall be controlling and supersede any conflicting terms of
this Agreement.

m) Educational Purpose License, Educational Institution Classroom License, and Educational
Institution Site License. If the Product is licensed under an Educational Purpose License upon
the terms specified in the applicable Educational Purpose License invoicing or packaging for
the Product, you may make use of the Product solely for Educational Purpose. "Educational
Purpose" means any non-commercial study or research that is undertaken solely in
furtherance of one's education, whether or not completed by a student in pursuit of an
educational degree, certificate or diploma and as used by teachers or facilitates teaching of a
class, and all administrative staff, faculty and employees, of any college, university, trade
school or other school ("Educational Institution"). With the acquisition of an Educational
Institution Classroom License, Licensee may install and Operate the Product by a number of
Users determined by the applicable invoicing terms within one Educational Institution in one
classroom. Within these limitations, you may install the Product as a "Network" Product and
run the Product from any networked Client Devices on Licensee's LAN, provided that such
Client Devices are located exclusively within one classroom. With the acquisition of an
Educational Institution Site License, Licensee may install and Operate the Product by a
number of Users determined by the applicable invoicing terms within one Educational
Institution in one geographic location. Within these limitations, you may install the Product as
a "Network" Product and run the Product from any networked Client Devices on Licensee's
LAN, provided that such Client Devices are located exclusively within one office complex within
one geographic location. Educational License may be granted exclusively at the discretion of
the Licensor upon your submission of a written request discussing your and your
employer/employees activities, when applicable, and your reasons for and purposes of
Operating the Product.

2.2. Multiple Environment Product; Multiple Language Product; Dual Media Product; Multiple
Copies; Bundles. If you use different versions of the Product or different language editions of the
Product, if you receive the Product on multiple media, if you otherwise receive multiple copies of
the Product, or if you received the Product bundled with other software, the total permitted
number of your Client Devices on which all versions of the Product are installed shall correspond
to the number of licenses you have obtained from the Licensor provided that unless the licensing
terms and the License Key provides otherwise, each purchased license entitles you to install and
Use the Product on one (1) Client Device. You may not rent, lease, sublicense, lend or transfer any
versions or copies of the Product regardless of whether you use the Product or not, provided that
the terms specified in the applicable product invoicing or packaging for the Product specify
otherwise.

Microolap DAC for MySQL, v.3.3.2, Programmer's reference295

© 1999-2021, Microolap Technologies

2.3. Run-time License. If the Product is licensed under Commercial License in accordance to
Sections 2.1(e) or 2.1(k), in addition to the licenses and rights granted therein, Licensor grants
Licensee a right to display, install, copy and distribute a portion of Licensor Software (the "Run-
time Edition") on Client Devices of its customers as part of the Licensee's bundled products (the
"Run-time License") in accordance with terms and conditions specified in the License Key,
and/or invoicing terms, including the limitations relating to the number Client Devices of such
customers or the number of such customers as the case may be, provided that, Licensee shall
include a valid and prominent copyright, trademark or any other proprietary notices in its bundled
products identifying the Licensor as the owner of the Run-time Edition as may be specified by
Licensor from time to time.

2.4. Updates. During the Term of this Agreement, you may download Updates to the Product
when and as the Licensor publishes them in its website or through other online services.
Notwithstanding any provision to the contrary herein, nothing in this Agreement shall be
construed as to grant you any rights or licenses with regard to the New Releases of the Product
or to entitle you to any New Release. This Agreement does not obligate the Licensor to provide
any Updates. Notwithstanding the foregoing, any Updates that you may receive become part of
the Product and the terms of this Agreement apply to them (unless this Agreement is superceded
by a further Agreement accompanying such Update or modified version of to the Product).

2.5. Material Terms and Conditions. You specifically agree that each of the terms and conditions of
this Section 2 are material and that failure of you to comply with these terms and conditions shall
constitute sufficient cause for Licensor to immediately terminate this Agreement and the License
granted under this Agreement. The presence of this Section 2.5 shall not be relevant in
determining the materiality of any other provision or breach of this Agreement by either party
hereto.

3. Additional Covenants; Assignment of Intellectual Property Rights.

3.1. Additional Limitations. Notwithstanding anything to the contrary herein, you may not Operate,
Use, or modify the Product in any way as to form the basis for creating a product that provides the
same, or substantially the same, functionality as the Product; and in the event you develop any
modifications, enhancements, derivative works and/or extensions to the Product, either
independently or jointly with Licensor, such modifications, enhancements, derivative works and/or
extensions and all rights associated therewith will be the exclusive property of Licensor. You will
not grant, either expressly or impliedly, any rights, title, interest, or licenses to any such
modifications, enhancements, derivative works and/or extensions to any third party. You will,
however, be entitled to use such modifications, enhancements, derivative works and/or
extensions under the terms set forth in this Agreement. You hereby assign all right, title and
interest in and to such modifications, enhancements, derivative works and/or extensions to the
Product to Licensor. You also agree to execute, acknowledge and deliver to Licensor all
documents and do all things Licensor deems necessary or desirable, at no cost to but at Licensor
expense, to enable Licensor to obtain and secure such modifications, enhancements, derivative
works and/or extensions anywhere in the world. You agree to secure all necessary rights and
obligations from relevant employees or third parties in order to satisfy the above obligations.

3.2. Reservations of all Rights. The Licensor reserves all rights not expressly granted herein.

3.3. Back-up Copies. You can make one (1) copy of the Product for backup and archival purposes,
provided, however, that the original and each copy is kept in your possession or control, and that
your installation, Operation and Use of the Product does not exceed that which is allowed in
Section 2 hereof.

3.4. Additional Protection Measures. Solely for the purpose of preventing unlicensed and/or
unauthorized Use of the Product, including without limitation Run-time Edition, the Software may
collect certain non-personal information relating to the hardware of your or your customer's Client
Devices and/or install on your or your customer's Client Devices certain technological measures
that are designed to prevent unlicensed and/or unauthorized Use and Operation of the Product,
and the Licensor may use this technology to confirm that you have a licensed copy of the Product.
Such installation or collection of information or updates of these technological measures may occur
through and/or during the installation or activation of the Product or Updates. The Product and/or
Updates will not install or may fail to Operate if installed contrary to the rights granted under the
License or if attempted to be installed or Operated on unlicensed copies of the Product. If you are
not using a licensed copy of the Product, you are not allowed to install the Updates. The Licensor

License Agreement 296

© 1999-2021, Microolap Technologies

will not collect any personally identifiable information from your computer during this process.

4. Term and Termination.

4.1. Term. The term of this Agreement ("Term") shall begin when you download, access or install
the Product, whichever is earlier, and shall continue in perpetuity unless otherwise designated in
the purchase order, Terms of Use, exhibit or unless otherwise terminated pursuant hereto.
Without prejudice to any other rights, this Agreement will terminate automatically if you fail to
comply with any of the limitations or other requirements described herein. Upon any termination
or expiration of this Agreement, you must immediately cease Operating the Product and all of its
components and destroy, uninstall and erase all copies of the Product and all of its components,
including without limitation on all systems and all types of media and in computer memory.

4.2. No Rights upon Termination. Upon termination of this Agreement you will no longer be
authorized to Operate or Use the Product in any way.

5. Support and Updates.

5.1. Terms of Support. During the Warranty Period as defined below, you are entitled to technical
services and support for the Product which is provided to you by Licensor free of charge during
the regular business hours (GMT+3), except for locally-observed holidays, and includes the
support provided through a special technical support section of the Licensor Site
(http://www.microolap.com/support/) ("Warranty Support"). During the Warranty Period,
Warranty Support is unlimited and includes technical and support questions and patch fixes. After
the expiration of the Warranty Period, you may purchase additional support services from Licensor
at current rates as listed at Licensor Site (http://www.microolap.com/support/).

5.2. Updates. During the Warranty Period hereunder and, if your purchasing terms provide for a
certain extended period of time during which you are entitled to Updates free of charge (i.e., one
year from the time of the purchase of the License), then for such extended period of time, you
may download Updates to the Product when and as the Licensor publishes them on the Licensor
Site, or through other online services. If the Product is an Update to a previous version of the
Product, you must possess a valid license to such previous version in order to use the Update.
You may continue to use the previous version of the Product on your Client Device after you
receive the Update to assist you in the transition to the Update, provided that: (i) the Update and
the previous version are installed on the same computer device; (ii) the previous version or copies
thereof are not transferred to another party unless all copies of the Update are also transferred
to such party; and (iii) you acknowledge that any obligation the Licensor may have to support the
previous version of the Product may be ended upon availability of the Update. Except for the
rights to free Updates during the Warranty Period, as further defined herein, nothing in this
Agreement shall be construed as to grant you any rights or licenses with regard to the new
version or releases of the Product or to entitle you to any new version, upgrade or release. This
Agreement does not obligate the Licensor to provide any Updates. Notwithstanding the foregoing,
any Updates that you may receive become part of the Product and the terms of this Agreement
apply to them (unless this Agreement is superseded by a succeeding agreement accompanying
such Update or modified version of the Product). Notwithstanding anything to the contrary herein,
nothing herein shall be deemed to entitle you to any Licensor's Optional Updates that are
provided by Licensor for a fee, or to any new releases, versions or substitutes of the Product.

5.3. Additional Support and Updates. In addition to the free Support and free Updates provided
for in Sections 5.1 and 5.2, you may purchase additional Services, additional Updates or additional
Support beyond the applicable period at the ongoing rates and prices published or provided by
Licensor.

6. Restrictions.

6.1. No Transfer of Rights. Except as otherwise specifically provided herein or in the applicable
Terms of Use, you may not transfer any rights pursuant to this Agreement nor rent, sublicense,
lease, loan or resell the Product or permanently or temporarily transfer the Product in any other
manner. You may not permit third parties, including any subcontractors, to benefit from the use or
functionality of the Product including, without limitations, via a timesharing, service bureau or
other arrangement, except to the extent such use is specified in the application price list,
purchase order or product packaging for the Product. Except as otherwise provided in Section 1.2
hereof, you may not, without the Licensor's prior written consent, reverse engineer, decompile,

Microolap DAC for MySQL, v.3.3.2, Programmer's reference297

© 1999-2021, Microolap Technologies

disassemble or otherwise reduce any part of the Product to human readable form nor permit any
third party to do so, except to the extent the foregoing restriction is expressly prohibited by
applicable law. Notwithstanding the foregoing sentence, decompiling the Software is permitted to
the extent the laws of your jurisdiction expressly give you the non-waivable right to do so to
obtain information necessary to render the Software interoperable with other software; provided,
however, that you must first request such information from the Licensor and the Licensor may, in
its discretion, either provide such information to you (subject to confidentiality terms) or impose
reasonable conditions, including a reasonable fee, on such use of the Software to ensure that the
Licensor's and its affiliates' proprietary rights in the Software are protected. Except for the
modification permitted under Section 1.2, you may not modify, or create derivative works based
upon the Product in whole or in part.

6.2. No Extraction for Separate Use. You shall not have the right to extract or to Use any
functionality of this Software, including any DLLs or other compiled units or Object Code fragments
other than as part of normal Operation of the Product described in the Documentation and as
integral part of Operation and functionality of the Product as a whole.

6.3. Proprietary Notices and Copies. You may not remove any proprietary notices or labels on the
Product. You may not copy the Product except as expressly permitted in Section 2 above.

6.4. Compliance with Law. You agree that in Operating the Product and in using any report or
information derived as a result of Operating this Product, you will comply with all applicable
international, national, state, regional and local laws and regulations, including, without limitation,
privacy, trademark, patent, copyright, export control and obscenity law and you shall not use the
Product for unethical or illegal business practices or in violation of any obligation to a third party in
using, Operating, accessing or running any of the Product and shall not knowingly assist any other
person or entity to so violate any obligation to a third party.

7. WARRANTIES AND DISCLAIMERS.

7.1. Limited Warranty. The Licensor warrants that for two (2) months (the "Warranty Period")
from the date the Product has been downloaded by you or was made otherwise available to you
by Licensor if the Product was supplied to you on other media, the media on which Product has
been provided will be free from defects in materials and workmanship and that the Software will
perform substantially in accordance with the Documentation or generally conform to the Product's
specifications published by the Licensor. Non-substantial variations of performance from the
Documentation do not establish a warranty right. THIS LIMITED WARRANTY DOES NOT APPLY TO
UPDATES AS APPLIED TO ANY MODIFIED PRODUCT, WHETHER OR NOT SUCH MODIFICATION IS
PERMISSIBLE HEREUNDER, TRIAL AND DEMO OR EVALUATION VERSIONS, UPDATES, PRE-RELEASE,
TRYOUT, PRODUCT SAMPLER, OR NOT FOR RESALE (NFR) COPIES OF PRODUCT. This limited
warranty is void and your support right terminates if the defect or damage has resulted from
accident, abuse, or misapplication or any modification, whether or not such modification is
permitted hereunder. Notwithstanding anything to the contrary herein, any and all modifications
shall be deemed derivative works within the meaning of copyright law and remain subject to the
terms of this Agreement, including without limitation Section 1.1 hereof, provided however, that any
damage or claims relating to or arising out of any modifications made by Licensee, whether or not
permitted hereunder, shall be the sole responsibility of Licensee. To make a warranty claim, you
must return the Product to the location where you obtained it along with proof of purchase within
such sixty (60) day period of the license fee you paid for the Product. THE LIMITED WARRANTY SET
FORTH IN THIS SECTION GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE ADDITIONAL RIGHTS
WHICH VARY FROM JURISDICTION TO JURISDICTION.

7.2. Customer Remedies. The Licensor and its suppliers' entire liability and your exclusive remedy
for any breach of the foregoing warranty shall be at the Licensor's option: (i) return of the
purchase price paid for the License, if any, (ii) replacement of the defective media in which the
Product is contained, or (iii) correction of the defects, "bugs" or errors within reasonable period of
time. You must return the defective media to the place of purchase at your expense with a copy of
your receipt. Any replacement media will be warranted for the remainder of the original Warranty
Period.

7.3. NO OTHER WARRANTIES. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, AND FOR ANY
WARRANTY, CONDITION, REPRESENTATION OR TERM TO THE EXTENT TO WHICH THE SAME CANNOT
OR MAY NOT BE EXCLUDED OR LIMITED BY LAW APPLICABLE TO YOU IN YOUR JURISDICTION, THE
PRODUCT IS PROVIDED "AS-IS" WITHOUT ANY WARRANTY WHATSOEVER AND THE LICENSOR

License Agreement 298

© 1999-2021, Microolap Technologies

MAKES NO PROMISES, REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESSED OR IMPLIED,
WHETHER BY STATUTE, COMMON LAW, CUSTOM, USAGE OR OTHERWISE, REGARDING OR RELATING
TO THE PRODUCT OR CONTENT THEREIN OR TO ANY OTHER MATERIAL FURNISHED OR PROVIDED TO
YOU PURSUANT TO THIS AGREEMENT OR OTHERWISE. YOU ASSUME ALL RISKS AND
RESPONSIBILITIES FOR SELECTION OF THE PRODUCT TO ACHIEVE YOUR INTENDED RESULTS, AND
FOR THE INSTALLATION OF, USE OF, AND RESULTS OBTAINED FROM THE PRODUCT. THE LICENSOR
MAKES NO WARRANTY THAT THE PRODUCT WILL BE ERROR FREE OR FREE FROM INTERRUPTION OR
FAILURE, OR THAT IT IS COMPATIBLE WITH ANY PARTICULAR HARDWARE OR SOFTWARE. TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR DISCLAIMS ALL WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT OF THIRD PARTY RIGHTS, INTEGRATION, SATISFACTORY
QUALITY OR FITNESS FOR ANY PARTICULAR PURPOSE WITH RESPECT TO THE PRODUCT AND THE
ACCOMPANYING WRITTEN MATERIALS OR THE USE THEREOF. SOME JURISDICTIONS DO NOT ALLOW
LIMITATIONS ON IMPLIED WARRANTIES, SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU. YOU
HEREBY ACKNOWLEDGE THAT THE PRODUCT MAY NOT BE OR BECOME AVAILABLE DUE TO ANY
NUMBER OF FACTORS INCLUDING WITHOUT LIMITATION PERIODIC SYSTEM MAINTENANCE,
SCHEDULED OR UNSCHEDULED, ACTS OF GOD, TECHNICAL FAILURE OF THE SOFTWARE,
TELECOMMUNICATIONS INFRASTRUCTURE, OR DELAY OR DISRUPTION ATTRIBUTABLE TO VIRUSES,
DENIAL OF SERVICE ATTACKS, INCREASED OR FLUCTUATING DEMAND, AND ACTIONS AND
OMISSIONS OF THIRD PARTIES. THEREFORE, THE LICENSOR EXPRESSLY DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY REGARDING SYSTEM AND/OR SOFTWARE AVAILABILITY, ACCESSIBILITY, OR
PERFORMANCE. THE LICENSOR DISCLAIMS ANY AND ALL LIABILITY FOR THE LOSS OF DATA DURING
ANY COMMUNICATIONS AND ANY LIABILITY ARISING FROM OR RELATED TO ANY FAILURE BY THE
LICENSOR TO TRANSMIT ACCURATE OR COMPLETE INFORMATION TO YOU.

7.4. LIMITED LIABILITY; NO LIABILITY FOR CONSEQUENTIAL DAMAGES. YOU ASSUME THE ENTIRE
COST OF ANY DAMAGE RESULTING FROM YOUR USE OF THE PRODUCT AND THE INFORMATION
CONTAINED IN OR COMPILED BY THE PRODUCT, AND THE INTERACTION (OR FAILURE TO INTERACT
PROPERLY) WITH ANY OTHER HARDWARE OR SOFTWARE WHETHER PROVIDED BY THE LICENSOR
OR A THIRD PARTY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL
THE LICENSOR OR ITS SUPPLIERS OR LICENSORS BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT
DAMAGES, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, LOSS OF DATA, LOSS OF GOODWILL, WORK STOPPAGE, HARDWARE OR
SOFTWARE DISRUPTION IMPAIRMENT OR FAILURE, REPAIR COSTS, TIME VALUE OR OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT, OR THE
INCOMPATIBILITY OF THE PRODUCT WITH ANY HARDWARE SOFTWARE OR USAGE, EVEN IF SUCH
PARTIES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT WILL
LICENSOR'S TOTAL LIABILITY TO YOU FOR ALL DAMAGES IN ANY ONE OR MORE CAUSE OF ACTION,
WHETHER IN CONTRACT, TORT OR OTHERWISE EXCEED THE AMOUNT PAID BY YOU FOR THE
PRODUCT. THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR
PERSONAL INJURY TO THE EXTENT THAT APPLICABLE LAW PROHIBITS SUCH LIMITATION.
FURTHERMORE, BECAUSE SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION
OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT
APPLY TO YOU.

8. Indemnification

8.1. Indemnification for Violations. In Operating the Product, you agree to use only those
materials for which you have the necessary patent, copyright and other permissions, licenses,
and/or clearances. You agree to indemnify, defend and hold harmless the Licensor and its
respective officers, directors, employees, agents, successors, and assigns (the "Licensor
Indemnitees") from any and all losses, liabilities, damages and claims, and all related expenses
including without limitation reasonable legal fees and disbursements and costs of investigation,
litigation, settlement, judgment, interest and penalties and costs related to, arising from, or in
connection with any third-party claim related to, arising from, or in connection with the actual or
alleged: (i) infringement by you or by Compiled Units (except when such breach is exclusively
attributable to Product) of any third-party intellectual property and/or proprietary right, including,
but not limited to, patent, trademark, copyright, trade secret, publicity and/or privacy, (ii) personal
injury (including death) or property damage due to gross negligence or intentional misconduct of
the Licensee, and (iii) breach by the Licensee of any of its representations, warranties,
obligations, and/or covenants set forth herein. You shall promptly notify the Licensor in writing
after you become aware of any such claims, but failure to give such notice shall not relieve you of
indemnity obligations hereunder. You shall have exclusive control over the settlement or defense

Microolap DAC for MySQL, v.3.3.2, Programmer's reference299

© 1999-2021, Microolap Technologies

of such claims or actions, except that Licensor may appear in the action, at its own expense,
through counsel reasonably acceptable to you, only in the event it is mutually determined by the
parties that an actual conflict of interest would exist by your representation of the Licensor and
you in such action. Licensor shall give you, at your expense, all information and assistance
reasonably requested by you to settle or defend such claims or actions. You shall be entitled to
retain all monetary proceeds, attorneys' fees, costs and other rewards you receive as a result of
defending or settling such claims. In the event you fail to promptly indemnify and defend such
claims and/or pay Licensor's expenses, as provided above, Licensor shall have the right to defend
itself, and in that case, you shall reimburse the Licensor Indemnitees for all of their attorneys'
fees, costs and damages incurred in settling or defending such claims within thirty (30) days of
each of Licensor's written requests. Nothing in this Section 3.2 or this Agreement shall be
interpreted as to exclude any possible legal recourse against the Licensee.

9. U.S. Government-Restricted Rights.

9.1. Notice to U.S. Government End Users. The Product and accompanying Documentation are
deemed to be "Commercial Items," as that term is defined at 48 C.F.R. §2.101, consisting of
"Commercial Computer Software" and "Commercial Computer Software Documentation,"
respectively, as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable.
Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable,
the Commercial Computer Software and Commercial Computer Software Documentation are being
licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those
rights, including any use, modification, reproduction, release, performance, display or disclosure of
the Product and accompanying Documentation, as are granted to all other end users pursuant to
the terms and conditions herein. Unpublished rights are reserved under the copyright laws of the
United States.

9.2. Export Restrictions. You acknowledge and agree that the Product may be subject to
restrictions and controls imposed by the Export Administration Act and the Export Administration
Regulations of the United States (the "Acts"). You agree and certify that neither the Product nor
any direct product thereof is being or will be used for any purpose prohibited by the Acts. You may
not Operate, download, export, or re-export the Product (a) into, or to a national or resident of,
any country to which the United States has embargoed goods, or (b) to anyone on the United
States Treasury Department's list of Specially Designated Nationals or the U.S. Commerce
Department's Table of Deny Orders. By downloading or using the Product, you are representing
and warranting that you are not located in, under the control of, or a national or resident of any
such country or on any such list. You acknowledge that it is your sole responsibility to comply with
any and all government export and other applicable laws and that the Licensor has no further
responsibility for such after the initial license to you. You warrant and represent that neither the
U.S. Commerce Department, Bureau of Export Administration nor any other U.S. federal agency
has suspended, revoked or denied your export privileges. For more information on the U.S. Export
Administration Regulations (EAR), 15 C.F.R. Parts 730-774, and the Bureau of Export
Administration ("BXA"), please see the BXA homepage (http://www.bxa.doc.gov).

10. Your Information and the Licensor's Privacy Policy

10.1. Privacy Policy. You acknowledge receipt of and agree to the Licensor's privacy statement
which is made available to you in connection with installation and is set forth in full at
http://www.microolap/about/privacy/. You hereby expressly consent to the Licensor's processing
of your personal data (which may be collected by the Licensor or its distributors) according to the
Licensor's current privacy policy as of the date of the effectiveness hereof which is incorporated
into this Agreement by reference. By entering into this Agreement, you agree that the Licensor
may collect and retain information about you, including your name, email address and credit card
information. The Licensor may employ other companies and individuals to perform certain functions
on its behalf. Examples include fulfilling orders, delivering packages, sending postal mail and e-
mail, removing repetitive information from customer lists, analyzing data, providing marketing
assistance, processing credit card payments, implementing fraud check policies, and providing
customer service. Such companies and individuals may have access to personal information
needed to perform their functions, but may not use it for other purposes. The Licensor publishes a
privacy policy on the Licensor Site and may amend such policy from time to time in its sole
discretion. You should refer to the Licensor's privacy policy prior to agreeing to this Agreement for
a more detailed explanation of how your information will be stored and used by the Licensor. If
"you" are an organization, you will ensure that each member of your organization (including
employees and contractors) about whom personal data may be provided to the Licensor has

License Agreement 300

© 1999-2021, Microolap Technologies

given his or her express consent to the Licensor's processing of such personal data. Personal
data will be processed by the Licensor or its distributors in the country where it was collected. The
relevant laws in such jurisdictions regarding processing of personal data may be less or more
stringent than the laws in your jurisdiction.

10.2. Public Announcements. The Licensor may identify you to the public as a customer of the
Licensor and describe in a customer case study the services and solutions delivered by the
Licensor to you. The Licensor may also issue one or more press releases, containing an
announcement of the execution and delivery of this Agreement and/or the implementation of the
Product by you. Nothing contained in this Section 10.2 shall be construed as an obligation by you
to disclose any of your proprietary or confidential information to any third party. In addition, you
may opt-out from this Section 10.2 by writing an opt-out request to the Licensor at
sales@microolap.com.

11. Miscellaneous.

11.1. Governing Law; Jurisdiction and Venue. This Agreement shall be governed by and construed
and enforced in accordance with the laws of the British Virgin Islands without reference to conflicts
of law rules and principles. This Agreement shall not be governed by the United Nations
Convention on Contracts for the International Sale of Goods, the application of which is expressly
disclaimed and excluded. The courts within the British Virgin Islands shall have exclusive
jurisdiction to adjudicate any dispute arising out of this Agreement. You agree that this Agreement
and any action, dispute, controversy, or claim that may be instituted based on this Agreement, or
arising out of or related to this Agreement or any alleged breach thereof, shall be prosecuted
exclusively in the courts of the British Virgin Islands and you, to the extent permitted by applicable
law, hereby waive the right to change venue to any other state, county, district or jurisdiction;
provided, however, that the Licensor as claimant shall be entitled to initiate proceedings in any
court of competent jurisdiction.

11.2. Period for Bringing Actions. No action, regardless of form, arising out of the transactions
under this Agreement, may be brought by either party hereto more than one (1) year after the
cause of action has occurred, or was discovered to have occurred, except that an action for
infringement of intellectual property rights may be brought within the maximum applicable
statutory period.

11.3. Entire Agreement; Severability; No Waiver. This Agreement is the entire agreement between
you and Licensor and supersedes any other prior agreements, proposals, communications or
advertising, oral or written, with respect to the Product or to subject matter of this Agreement.
You acknowledge that you have read this Agreement, understand it and agree to be bound by its
terms. If any provision of this Agreement is found by a court of competent jurisdiction to be invalid,
void, or unenforceable for any reason, in whole or in part, such provision will be more narrowly
construed so that it becomes legal and enforceable, and the entire Agreement will not fail on
account thereof and the balance of the Agreement will continue in full force and effect to the
maximum extent permitted by law or equity while preserving, to the fullest extent possible, its
original intent. No waiver of any provision or condition herein shall be valid unless in writing and
signed by you and an authorized representative of Licensor provided that no waiver of any breach
of any provisions of this Agreement will constitute a waiver of any prior, concurrent or subsequent
breach. Licensor's failure to insist upon or enforce strict performance of any provision of this
Agreement or any right shall not be construed as a waiver of any such provision or right.

11.4. Contact Information. Should you have any questions concerning this Agreement, or if you
desire to contact the Licensor for any reason, please contact our Customer Department at
http://microolap.com/support/.

© 1999-2021, Microolap Technologies. All rights reserved. The Product, including the Software and any
accompanying Documentation, are copyrighted and protected by copyright laws and international
copyright treaties, as well as other intellectual property laws and treaties.

	Welcome!
	Installation
	Registration
	Components list

	TBDE2MySQLDAC
	Properties
	ConvertComponents
	Database
	DeleteSourceComponents
	Execute

	TMySQLBatchExecute
	Properties
	Aborted
	Action
	Database
	Delimiter
	RowsAffected
	SQL
	Statement Position Properties
	StatementNumber

	Methods
	AbortExecute
	ExecSQL

	Events
	OnAfterExecute
	OnAfterStatement
	OnBatchError
	OnBatchErrorEx
	OnBeforeExecute
	OnBeforeStatement
	OnProcessEx

	TMySQLDatabase
	Properties
	Connected
	ConnectionCharacterSet
	ConnectionCollation
	ConnectionTimeout
	ConnectOptions
	DatabaseName
	DataSetCount
	DatasetOptions
	DataSets
	DesignOptions
	Exclusive
	Handle
	HandleShared
	Host
	InTransaction
	IsSSLUsed
	KeepConnection
	LastInsertID
	LoginPrompt
	MaxAllowedPacketSize
	MultiThreaded
	Params
	Port
	ReadOnly
	ServerVersion
	SSLProperties
	SSLCert
	SSLKey
	SSLCACert
	SSLLibName
	SSLCryptoLibName
	SSLLCipherList
	TLSVersion

	TransIsolation
	UserName
	UserPassword
	Utf8Used
	WarningsCount

	Methods
	ApplyUpdates
	ChangeUser
	Close
	CloseDataSets
	Commit
	Connect
	ConnectWithConnectionOptionsDialog
	Create
	Destroy
	Disconnect
	Execute
	GetCharSet
	GetClientInfo
	GetDatabaseCharacterset
	GetDatabaseCollation
	GetDatabases
	GetDatabaseSize
	GetFieldNames
	GetFuncNames
	GetHostInfo
	GetIdentifier
	GetProtoInfo
	GetRoutinesNames
	GetServerInfo
	GetServerStat
	GetStoredProcNames
	GetTableEngines
	GetTableNames
	Kill
	Open
	Ping
	Reconnect
	Rollback
	SelectXxx
	Shutdown
	StartTransaction

	Events
	AfterConnect
	AfterDisconnect
	BeforeConnect
	BeforeDisconnect
	OnConnectionFailure
	OnLogin
	OnReconnect

	TMySQLDataset
	Properties
	Active
	AllowSequenced
	AutoCalcFields
	AutoRefresh
	AvailableResultsetCount
	BlockReadSize
	Bof
	Bookmark
	CacheBlobs
	CachedUpdates
	CanModify
	Database
	DefaultFields
	Eof
	FetchOnDemand
	FetchRows
	FieldCount
	FieldDefList
	FieldList
	Fields
	FieldValues
	Filter
	Filtered
	FilterOptions
	Found
	KeySize
	LastInsertID
	Modified
	MultiResultsetNo
	Name
	ObjectView
	RecNo
	RecordCount
	RecordSize
	RefreshDelete
	SortFieldNames
	SparseArrays
	State
	StatementID
	UpdateMode
	UpdateObject

	Methods
	ActiveBuffer
	Append
	AppendRecord
	ApplyUpdates
	BookmarkValid
	Cancel
	CancelUpdates
	CheckBrowseMode
	CheckOpen
	ClearFields
	Close
	CloseDatabase
	CommitUpdates
	CompareBookmarks
	ControlsDisabled
	CursorPosChanged
	Delete
	DisableControls
	Edit
	EnableControls
	FetchAll
	FieldByName
	FindField
	FindFirst
	FindLast
	FindNext
	FindPrior
	First
	FlushBuffers
	FreeBookmark
	GetBlobFieldData
	GetBookmark
	GetCurrentRecord
	GetDetailDataSets
	GetFieldData
	GetFieldList
	GetFieldNames
	GetFieldType
	GetIndexInfo
	GetLastInsertID
	GotoBookmark
	Insert
	InsertRecord
	IsEmpty
	IsLinkedTo
	Last
	Locate
	Lookup
	MoveBy
	Next
	Open
	OpenDatabase
	Post
	Prepare
	Prior
	Refresh
	RefreshRecord
	Resync
	RevertRecord
	SetFields
	SortBy
	Translate
	UnPrepare
	UpdateCursorPos
	UpdateRecord
	UpdateStatus
	FetchNext

	Events
	AfterCancel
	AfterClose
	AfterDelete
	AfterEdit
	AfterInsert
	AfterOpen
	AfterPost
	AfterRefresh
	AfterScroll
	BeforeCancel
	BeforeClose
	BeforeDelete
	BeforeEdit
	BeforeInsert
	BeforeOpen
	BeforePost
	BeforeRefresh
	BeforeScroll
	OnCalcFields
	OnCompare
	OnDeleteError
	OnDeleting
	OnEditError
	OnFilterRecord
	OnInserting
	OnNewRecord
	OnPostError
	OnPosting
	OnUpdateError

	TMySQLDirectQuery
	Properties
	Active
	Bof
	Database
	Eof
	FieldLength
	FieldNames
	FieldsCount
	FieldValues
	IsEmpty
	RecNo
	RecordCount
	SQL
	TMySQLDirectQuery.Properties.FieldTypes

	Methods
	Close
	FieldIndexByName
	FieldIsNull
	FieldRawDataPointer
	FieldValueByFieldName
	First
	Last
	MoveBy
	Next
	Open
	Prior
	Refresh

	TMySQLDump
	Properties
	CompleteInsert
	Database
	Delimiter
	DisableKeys
	DisableUniqueChecks
	DropObject
	DumpOption
	ExcludeTables
	ExtInsert
	ExtInsertsCount
	IgnoreLockTables
	IncludeHeader
	Limit
	LineComment
	LockTables
	RewriteFile
	SQLFile
	TableList
	UseCreateDB
	UseHexBlob

	Methods
	DumpToStream
	Execute

	Events
	BeforeDump
	OnDataProcess
	OnProcess

	TMySQLMacroQuery
	Properties
	MacroChar
	MacroCount
	Macros

	Methods
	Reopen
	MacroByname

	Events

	TMySQLMonitor
	Properties
	Active
	Handle
	TraceFlags

	Events
	OnSQL

	TMySQLQuery
	Properties
	DataSource
	Handle
	ParamCheck
	ParamCount
	Params
	Prepared
	ProcessComments
	RequestLive
	RowsAffected
	SQL
	SQLBinary
	Text
	UniDirectional

	Methods
	Create
	Destroy
	ExecSQL
	GetDetailLinkFields
	ParamByName

	Events

	TMySQLStoredProc
	Properties
	Params
	ParamsCount
	ProcedureName
	RoutineType

	Methods
	ExecProc
	ParamByName
	RefreshParams
	SetNeedRefreshParams

	Events

	TMySQLTable
	Properties
	BatchModify
	CanModify
	DataSource
	DefaultIndex
	Exists
	FieldDefs
	Handle
	IndexDefs
	IndexFieldCount
	IndexFieldNames
	IndexFields
	IndexName
	KeyExclusive
	KeyFieldCount
	Limit
	MasterFields
	MasterSource
	Offset
	ReadOnly
	ReopenOnIndexChange
	StoreDefs
	TableName

	Methods
	AddIndex
	ApplyRange
	CancelRange
	Create
	CreateBlobStream
	CreateTable
	DeleteIndex
	Destroy
	EditKey
	EditRangeEnd
	EditRangeStart
	EmptyTable
	FindKey
	FindNearest
	GetDetailLinkFields
	GetIndexNames
	GetTableEngine
	GotoCurrent
	GotoKey
	GotoNearest
	IsSequenced
	LockTable
	RenameTable
	SetKey
	SetRange
	SetRangeEnd
	SetRangeStart
	UnlockTable

	Events

	TMySQLTools
	Properties
	CheckOption
	Database
	Directory
	MySQLOperation
	RepairOption
	TableList

	Methods
	Execute

	Events
	OnError
	OnSuccess

	TMySQLUpdateSQL
	Properties
	DataSet
	DeleteSQL
	InsertSQL
	ModifySQL
	Query
	RefreshRecordSQL
	SQL

	Methods
	Apply
	Create
	Destroy
	ExecSQL
	SetParams

	FAQ
	1.I've purchased DAC for MySQL, but I keep getting the nag(trial) screen. What can I do?
	2.I've created new project with C++Builder, put some DAC for MySQL components on the form and run it. I have an Access violation right after start. What can I do?
	3.How can I set database connection properties (eg. coCompress) from code?
	4.What do I need to use SSL-encrypted connections?
	5.I have encountered a performance problem with reloading resultset. What can I do?
	6.Should I use TMySQLUpdateSQL everytime with TMySQLQuery?
	7.How can I use Unicode data in my application?
	8. My Delphi 5 application with DAC for MySQL components fails right after start with AV. What should I do?

	Examples
	AfterDelete, Format
	Append, FieldValues, Post
	BeforeInsert, Insert, AsInteger, FieldByName
	BeforePost, Abort
	Create, CreateBlobStream, Edit, CopyFrom
	CreateTable() method usage
	DataSetCount, DataSets
	DisableControls, EnableControls, Eof
	EditKey, GotoKey
	EditRangeStart, EditRangeEnd, FieldByName, ApplyRange
	EmptyTable
	FieldCount, Fields, FieldName
	FindField, AsString
	FindNearest
	GetBookmark, GotoBookmark, FreeBookmark, FindPrior, Value, OnDataChange, BOF
	IndexDefs, Update, Count, Items, IndexName, Fields, Name
	IndexFields, IndexFieldCount
	MasterSource, MasterFields
	Min, Max, Position, RecordCount, First, Next
	MoveBy, SelectedIndex, Tag
	ParamCount, DataType, StrToIntDef, AsXXX
	Prepared, Prepare
	SetKey, GotoNearest
	SetRange, CancelRange, Refresh
	SQL, ExecSQL
	State, Seek, Truncate

	DataTypes map
	License Agreement

